Rambhatla L, Ram-Mohan S, Cheng JJ, Sherley JL. Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells. Cancer Res. 2005;65:3155–61.
Article
PubMed
CAS
Google Scholar
Capuco AV, Evock-Clover CM, Minuti A, Wood DL. In vivo expansion of the mammary stem/ progenitor cell population by xanthosine infusion. Exp Biol Med (Maywood). 2009;234:475–82.
Article
CAS
Google Scholar
Rauner G, Barash I. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation. Exp Cell Res. 2014;328:186–96.
Article
PubMed
CAS
Google Scholar
Prpar Mihevc S, Ogorevc J, Dovc P. Lineage-specific markers of goat mammary cells in primary culture. Vitr Cell Dev Biol Anim. 2014;50:926–36.
Article
CAS
Google Scholar
Boutinaud M, Jammes H. Potential uses of milk epithelial cells: a review. Reprod Nutr Dev. 2002;42:133–47.
Article
PubMed
Google Scholar
Anand V, Dogra N, Singh S, Kumar SN, Jena MK, Malakar D, et al. Establishment and characterization of a buffalo (Bubalus bubalis) mammary epithelial cell line. PLoS One. 2012;7:e40469.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lemay DG, Ballard OA, Hughes MA, Morrow AL, Horseman ND, Nommsen-Rivers LA. RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS One. 2013;8:e67531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choudhary RK, Kaur H, Choudhary S, Verma R. Distribution and analysis of milk fat globule and crescent in murrah buffalo and crossbred cow. Proc Natl Acad Sci India Sect B Biol Sci. 2015;87:167–72.
Article
CAS
Google Scholar
Ménard O, Ahmad S, Rousseau F, Briard-Bion V, Gaucheron F, Lopez C. Buffalo vs. cow milk fat globules: size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010;120:544–51.
Article
CAS
Google Scholar
Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, et al. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics. 2009;37:12–22.
Article
PubMed
CAS
Google Scholar
Lemay DG, Hovey RC, Hartono SR, Hinde K, Smilowitz JT, Ventimiglia F, et al. Sequencing the transcriptome of milk production: milk trumps mammary tissue. BMC Genomics 2013;14:872.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
PubMed
CAS
Google Scholar
Choudhary S, Choudhary RK. Rapid and efficient method of total RNA isolation from milk fat for transcriptome analysis of mammary gland. Proc Natl Acad Sci India Sect B Biol Sci. 2017;
Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet. 2017;49:643–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896–902.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kapila N, Kishore A, Sodhi M, Sharma A, Kumar P, Mohanty a K, et al. Identification of appropriate reference genes for qRT-PCR analysis of heat-stressed mammary epithelial cells in riverine buffaloes (Bubalus bubalis). ISRN Biotechnol. 2013;2013:1–9.
Article
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:1–11.
Article
Google Scholar
Spitsberg VL, Matitashvili E, Gorewit RC. Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur J Biochem. 1995;230:872–8.
Article
PubMed
CAS
Google Scholar
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from gene ontology and Reactome pathways and data analysis tool enhancements, Nucleic Acids Res 2017;45:D183–D189.
Choudhary RK, Capuco AV. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment. BMC Cell Biol. 2012;13:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akers RM, Capuco AV, Keys JE. Mammary histology and alveolar cell differentiation during late gestation and early lactation in mammary tissue of beef and dairy heifers. Livest Sci. 2006;105:44–9.
Article
Google Scholar
Zhang X, Liu N, Ma D, Liu L, Jiang L, Zhou Y, et al. Receptor for activated C kinase 1 (RACK1) promotes the progression of OSCC via the AKT/mTOR pathway. Int J Oncol. 2016;49:539–48.
Article
PubMed
CAS
Google Scholar
Choudhary S, Choudhary RK. Rapid and efficient method of total RNA isolation from milk fat for transcriptome analysis of mammary gland. Am Dairy Sci Assoc Annu Meet, J Dairy Sci. 2017;100(Suppl. 2)
Chen Q, Wu Y, Zhang M, Xu W, Guo X, Yan X, et al. Milk fat globule is an alternative to mammary epithelial cells for gene expression analysis in buffalo. J Dairy Res. 2016;83:1–7.
Article
CAS
Google Scholar
Cánovas A, Rincón G, Bevilacqua C, Islas-Trejo A, Brenaut P, Hovey RC, et al. Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-sequencing. Sci Rep. 2014;4:5297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brenaut P, Bangera R, Bevilacqua C, Rebours E, Cebo C, Martin P. Validation of RNA isolated from milk fat globules to profile mammary epithelial cell expression during lactation and transcriptional response to a bacterial infection. J Dairy Sci Elsevier. 2012;95:6130–44.
Article
CAS
Google Scholar
Paten AM, Duncan EJ, Pain SJ, Peterson SW, Kenyon PR, Blair HT, et al. Functional development of the adult ovine mammary gland--insights from gene expression profiling. BMC Genomics. 2015;16:748.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi H, Zhu J, Luo J, Cao W, Shi H, Yao D, et al. Genes regulating lipid and protein metabolism are highly expressed in mammary gland of lactating dairy goats. Funct Integr Genomics. 2015;15:309–21.
Article
PubMed
CAS
Google Scholar
Bionaz M, Loor JJ. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J Nutr. 2008;138:1019–24.
Article
PubMed
CAS
Google Scholar
Mihevc SP, Dovč P. Mammary tumors in ruminants. Acta argiculturae Slov. 2013;102:83–6.
Google Scholar
Choudhary RK, Choudhary S, Pathak D, Verma R. Mucin 1 aberrently expresses n goat mammary carcinoma. 27th Annu. Meet. Indian Soc. Reprod. Fertil. 2017:0072.
Choudhary RK, Choudhary RK, Choudhary S, Verma R. CD10 is a marker of goat mammary Cancer. EC Vet Sci. 2016;01:1–2.
Google Scholar
Baldassarre H, Deslauriers J, Neveu N, Bordignon V. Detection of endoplasmic reticulum stress markers and production enhancement treatments in transgenic goats expressing recombinant human butyrylcholinesterase. Transgenic Res. 2011;20:1265–72.
Article
PubMed
CAS
Google Scholar
Moh MC, Shen S. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox. Cell Adhes Migr. 2009;3:334–6.
Article
Google Scholar
Chiou S, Wang C, Tseng Y, Lee Y, Chen S, Chou C, et al. A novel role for β 2-microglobulin : a precursor of antibacterial chemokine in respiratory epithelial cells. Sci Rep. 2016:1–12.
Orsi N. The antimicrobial activity of lactoferrin: current status and perspectives. Biometals. 2004;17:189–96.
Article
PubMed
CAS
Google Scholar
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taylor SC, Laperriere G, Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci Rep. Nature Publishing Group; 2017;7:2409.
Baratta M, Chal F. Adults mammary stem cell in cow ’ s Milk : new perspectives and future challenge. J Vet Sci Anim Husb. 2013;1:5–6.
Google Scholar
Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 2007;329:129–36.
Article
PubMed
Google Scholar