Green MS. Did the hesitancy in declaring COVID-19 a pandemic reflect a need to redefine the term? Lancet. 2020;395(10229):1034–5. https://doi.org/10.1016/S0140-6736(20)30630-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
U.S. Food & Drug Administration (2021). Fda.gov “fda.gov”. Retrieved 31/03, 2021, from https://www.fda.gov/drugs/coronavirus-covid-19-drugs/coronavirus-treatment-acceleration-program-ctap.
Chaib, F. (2020). “Independent evaluation of global COVID-19 response announced”. Retrieved 27/01, 2021, from https://www.who.int/news/item/09-07-2020-independent-evaluation-of-global-covid-19-response-announced.
Kupferschmidt K, Vogel G (2021). Sciencemag.org “sciencemag.org”. Retrieved 31/03, 2021, from https://www.sciencemag.org/news/2021/03/compromise-who-report-resolves-little-pandemic-s-origins-details-probe-s-next-steps.
Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, et al. Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol Cell. 2020;79(5):710–27Erratum in: Mol Cell. 2020 Dec 17;80(6):1136-1138. https://doi.org/10.1016/j.molcel.2020.11.048.
CAS
Article
PubMed
PubMed Central
Google Scholar
Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008;9(4):267–76. https://doi.org/10.1038/nrg2323.
CAS
Article
PubMed
Google Scholar
Daugherty MD, Malik HS. Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet. 2012;46(1):677–700. https://doi.org/10.1146/annurev-genet-110711-155522.
CAS
Article
PubMed
Google Scholar
Mandary MB, Masomian M, Poh CL. Impact of RNA virus evolution on quasispecies formation and virulence. Int J Mol Sci. 2019;20(18):4657. https://doi.org/10.3390/ijms20184657.
CAS
Article
PubMed Central
Google Scholar
Stern A, Bianco S, Yeh MT, Wright C, Butcher K, Tang C, et al. Costs and benefits of mutational robustness in RNA viruses. Cell Rep. 2014;8(4):1026–36. https://doi.org/10.1016/j.celrep.2014.07.011.
CAS
Article
PubMed
PubMed Central
Google Scholar
GISAID (2020). “Global initiative on sharing avian flu data”. Retrieved 31/03, 2021, from https://www.gisaid.org/.
Nextstrain (2021). “Real-time tracking of pathogen evolution”. Retrieved 31/03, 2021, from https://nextstrain.org/ncov/global.
Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–3. https://doi.org/10.1093/bioinformatics/bty407.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang SW, Miller SO, Yen CH, Wang SF. Impact of genetic variability in ACE2 expression on the evolutionary dynamics of SARS-CoV-2 spike D614G mutation. Genes (Basel). 2020;12(1):E16.
Article
Google Scholar
Wise J. Covid-19: new coronavirus variant is identified in UK. BMJ. 2020;371:m4857.
Article
Google Scholar
Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021; 592(7852):116–21. https://doi.org/10.1038/s41586-020-2895-3.
Kemp SA, Datir RP, Collier DA, Ferreira IATM, Carabelli A, Harvey W, Robertson DL, Gupta RK. Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/ΔV70. bioRxiv. 2020. https://doi.org/10.1101/2020.12.14.422555.
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020. https://doi.org/10.1101/2020.12.21.20248640.
Da Silva FR Jr, Benites FJ, Lamarca AP, de Almeida LGP, Hansen AW, Gularte JS, et al. Pervasive transmission of E484K and emergence of VUI-NPI3L with evidence of SARS-CoV-2 co-infection events by two lineages in Rio Grande do Sul, Brasil.Virus Res. 2021;296:198345.https://doi.org/10.1016/j.virusres.2021.198345.
Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv. 2021. https://doi.org/10.1101/2021.03.07.21252647.
Abdool Karim SS, de Oliveira T. New SARS-CoV-2 variants - clinical, public health, and vaccine implications. N Engl J Med. 2021. https://doi.org/10.1056/NEJMc2100362.
Tarke A, Sidney J, Methot N, Zhang Y, Dan JM, Goodwin B, et al. Negligible impact of SARS-CoV-2 variants on CD4+ and CD8+ T cell reactivity in COVID-19 exposed donors and vaccinees. bioRxiv. 2021. https://doi.org/10.1101/2021.02.27.433180.
Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021. https://doi.org/10.1136/bmj.n579.
Alpert T, Lasek-Nesselquist E, Brito AF, Valesano AL, Rothman J, MacKay MJ, et al. Early introductions and community transmission of SARS-CoV-2 variant B.1.1.7 in the United States. medRxiv.2021.02.10.21251540.
Cyranoski D. Alarming COVID variants show vital role of genomic surveillance. Nature. 2021;589(7842):337–8. https://doi.org/10.1038/d41586-021-00065-4.
Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35(12):1123–38. https://doi.org/10.1007/s10654-020-00698-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Novelli L, Motta F, De Santis M, Ansari AA, Gershwin ME, Selmi C. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19 - a systematic review of the literature. J Autoimmun. 2020;117:102592.
Article
Google Scholar
Guler SA, Ebner L, Beigelman C, Bridevaux PO, Brutsche M, Clarenbach C, et al. Pulmonary function and radiological features four months after COVID-19: first results from the national prospective observational Swiss COVID-19 lung study. Eur Respir J. 2021:2003690. https://doi.org/10.1183/13993003.03690-2020.
Di Maria E, Latini A, Borgiani P, Novelli G. Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): rapid systematic review and field synopsis. Hum Genomics. 2020;14(1):30. https://doi.org/10.1186/s40246-020-00280-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Bastard P, Bolze A, Jouanguy E, Zhang SY, Cobat A, et al. Life-threatening COVID-19: defective interferons unleash excessive inflammation. Med. 2020;1(1):14–20.
Article
Google Scholar
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. https://doi.org/10.1126/science.abd45702020:eabd4570.
Latini A, Agolini E, Novelli A, Borgiani P, Giannini R, Gravina P, et al. COVID-19 and genetic variants of protein involved in the SARS-CoV-2 entry into the host cells. Genes (Basel). 2020;11(9):1010. https://doi.org/10.3390/genes11091010.
CAS
Article
Google Scholar
Hu J, Li C, Wang S, Li T, Zhang H. Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. medRxiv. 2020.11.05.20226761.
Novelli A, Andreani M, Biancolella M, Liberatoscioli L, Passarelli C, Colona VL, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA. 2020;96(5):610–4. https://doi.org/10.1111/tan.14047.
CAS
Article
PubMed
Google Scholar
Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in Covid-19. Nature. 2020.
Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–34. https://doi.org/10.1056/NEJMoa2020283.
Kim YC, Jeong BH. Strong correlation between the case fatality rate of COVID-19 and the rs6598045 single nucleotide polymorphism (SNP) of the interferon-induced transmembrane protein 3 (IFITM3) gene at the population-level. Genes (Basel). 2020;12(1):42. https://doi.org/10.3390/genes12010042.
CAS
Article
Google Scholar
Kuo CL, Pilling LC, Atkins JL, Masoli JAH, Delgado J, Kuchel GA, et al. APOE e4 genotype predicts severe COVID-19 in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231–2. https://doi.org/10.1093/gerona/glaa131.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):216. https://doi.org/10.1186/s12916-020-01673-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang F, Huang S, Gao R, Zhou Y, Lai C, Li Z, et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov. 2020;6(1):83. https://doi.org/10.1038/s41421-020-00231-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;4(1):9. https://doi.org/10.1186/1471-2350-4-9.
Article
PubMed
PubMed Central
Google Scholar
Vietzen H, Zoufaly A, Traugott M, Aberle J, Aberle SW, Puchhammer-Stöckl E. Deletion of the NKG2C receptor encoding KLRC2 gene and HLA-E variants are risk factors for severe COVID-19. Genet Med. 2021:1–5.
van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):1–11. https://doi.org/10.1001/jama.2020.13719.
Novelli A, Biancolella M, Borgiani P, Cocciadiferro D, Colona VL, D’Apice MR, et al. Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum Genomics. 2020;14(1):29. https://doi.org/10.1186/s40246-020-00279-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Novelli G, Biancolella M, Mehrian-Shai R, Erickson C, Godri Pollitt KJ, Vasiliou V, et al. COVID-19 update: the first 6 months of the pandemic. Human Genom. 2020;14(1):48. https://doi.org/10.1186/s40246-020-00298-w.
CAS
Article
Google Scholar
Curtis D. Variants in ACE2 and TMPRSS2 genes are not major determinants of COVID-19 severity in UK Biobank subjects. medRxiv. 2020:2020.05.01.20085860.
Elhabyan A, Elyaacoub S, Sanad E, Abukhadra A, Elhabyan A, Dinu V. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: a systematic review. Virus Res. 2020;289:198163. https://doi.org/10.1016/j.virusres.2020.198163.
CAS
Article
PubMed
PubMed Central
Google Scholar
Oh JH, Tannenbaum A, Deasy JO. Identification of biological correlates associated with respiratory failure in COVID-19. BMC Med Genet. 2020;13(1):186.
CAS
Google Scholar
Yuan J, Fan D, Xue Z, Qu J, Su J. Co-expression of mitochondrial genes and ACE2 in cornea involved in COVID-19. Invest Ophthalmol Vis Sci. 2020;61(12):13. https://doi.org/10.1167/iovs.61.12.13.
CAS
Article
PubMed
PubMed Central
Google Scholar
Smatti MK, Al-Sarraj YA, Albagha O, Yassine HM. Host genetic variants potentially associated with SARS-CoV-2: a multi-population analysis. Front Genet. 2020;11(1064).
Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. 2019;10(1):3328. https://doi.org/10.1038/s41467-019-11112-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
Povysil G, Butler-Laporte G, Shang N, Weng C, Khan A, Alaamery M, et al. Failure to replicate the association of rare loss-of-function variants in type I IFN immunity genes with severe COVID-19. medRxiv. 2020:2020.12.18.20248226.
Henzinger H, Barth DA, Klec C, Pichler M. Non-coding RNAs and SARS-related coronaviruses. Viruses. 2020;12(12).
Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clin Genet. 2017;92(3):235–42. https://doi.org/10.1111/cge.12950.
CAS
Article
PubMed
Google Scholar
Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017;7(4).
Schuler BA, Habermann AC, Plosa EJ, Taylor CJ, Jetter C, Negretti NM, et al. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J Clin Invest. 2021;131(1). https://doi.org/10.1172/JCI140766.
Blume C, Jackson CL, Spalluto CM, Legebeke J, Nazlamova L, Conforti F, et al. A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet. 2021;53(2):205–14. https://doi.org/10.1038/s41588-020-00759-x.
CAS
Article
PubMed
Google Scholar
Miller LH, Mason SJ, Clyde DF, McGinniss MH. The resistance factor to plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976;295(6):302–4. https://doi.org/10.1056/NEJM197608052950602.
CAS
Article
PubMed
Google Scholar
Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, san Francisco City cohort, ALIVE study. Science. 1996;273(5283):1856–62. https://doi.org/10.1126/science.273.5283.1856.
CAS
Article
PubMed
Google Scholar
Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, et al. Human susceptibility and resistance to Norwalk virus infection. Nat Med. 2003;9(5):548–53. https://doi.org/10.1038/nm860.
CAS
Article
PubMed
Google Scholar
Zeberg H, Pääbo S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc Natl Acad Sci. 2021;118(9):e2026309118. https://doi.org/10.1073/pnas.2026309118.
CAS
Article
PubMed
PubMed Central
Google Scholar
Maeda JM, Nkengasong JN. The puzzle of the COVID-19 pandemic in Africa. Science. 2021;371(6524):27–8. https://doi.org/10.1126/science.abf8832.
CAS
Article
PubMed
Google Scholar
Aluko OM, Lawal SA, Falana MM, Adeagbo AS, Ijomone OM. Tackling COVID-19 in Africa: a focus on Nigeria’s peculiarities and challenges. Innovation (N Y). 2021;2(1):100078. https://doi.org/10.1016/j.xinn.2021.100078.
Article
Google Scholar
Tso FY, Lidenge SJ, Peña PB, Clegg AA, Ngowi JR, Mwaiselage J, et al. High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. Int J Infect Dis. 2021;102:577–83. https://doi.org/10.1016/j.ijid.2020.10.104.
CAS
Article
PubMed
Google Scholar
Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wanjiku P, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science. 2021;371(6524):79–82. https://doi.org/10.1126/science.abe1916.
CAS
Article
PubMed
Google Scholar
The Lancet. COVID-19 in Latin America: a humanitarian crisis. Lancet. 2020;396(10261):1463. https://doi.org/10.1016/S0140-6736(20)32328-X.
CAS
Article
PubMed
Google Scholar
Horwitz, L. (2021). “Timeline: Latin America’s race for a COVID-19 vaccine”. Retrieved 31/03, 2021, from https://www.as-coa.org/articles/timeline-latin-americas-race-covid-19-vaccine.
Kelland, K. (2021). “COVID-19: Global donors pledge $8.8 billion for vaccines”. Retrieved 31/03, 2021, from https://www.weforum.org/agenda/2020/06/vaccines-immunisation-poor-countries-coronavirus-covid-gavi.
Cohen J. Shots of hope. Science. 2020;370(6523):1392–4. https://doi.org/10.1126/science.370.6523.1392.
CAS
Article
PubMed
Google Scholar
Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10(5):301–16. https://doi.org/10.1038/nri2761.
CAS
Article
PubMed
Google Scholar
Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004;2(9):695–703. https://doi.org/10.1038/nrmicro974.
CAS
Article
PubMed
Google Scholar
ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, Haagmans BL, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004;363(9427):2139–41. https://doi.org/10.1016/S0140-6736(04)16506-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A. 2004;101(8):2536–41. https://doi.org/10.1073/pnas.0307140101.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci U S A. 2007;104(29):12123–8. https://doi.org/10.1073/pnas.0701000104.
CAS
Article
PubMed
PubMed Central
Google Scholar
Corti D, Zhao J, Pedotti M, Simonelli L, Agnihothram S, Fett C, et al. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc Natl Acad Sci U S A. 2015;112(33):10473–8. https://doi.org/10.1073/pnas.1510199112.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell. 2020;182(1):73–84.e16.
CAS
Article
Google Scholar
Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020;369(6506):1010–4. https://doi.org/10.1126/science.abd0827.
CAS
Article
PubMed
PubMed Central
Google Scholar
Noy-Porat T, Makdasi E, Alcalay R, Mechaly A, Levy Y, Bercovich-Kinori A, et al. A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. Nat Commun. 2020;11(1):4303. https://doi.org/10.1038/s41467-020-18159-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020;369(6506):956–63. https://doi.org/10.1126/science.abc7520.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020;584(7819):120–4. https://doi.org/10.1038/s41586-020-2381-y.
CAS
Article
PubMed
Google Scholar
Wan J, Xing S, Ding L, Wang Y, Gu C, Wu Y, et al. Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection. Cell Rep. 2020;32(3):107918. https://doi.org/10.1016/j.celrep.2020.107918.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science. 2020;369(6504):731–6. https://doi.org/10.1126/science.abc7424.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 2020.
Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, Sandkovsky U, et al. A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med. 2020;384(10):905–14. https://doi.org/10.1056/NEJMoa2033130.
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 2020;384(3):238–51.https://doi.org/10.1056/NEJMoa2035002.
Lilly.com (2021). “New data show treatment with Lilly’s neutralizing antibodies bamlanivimab (LY-CoV555) and etesevimab (LY-CoV016) together reduced risk of COVID-19 hospitalizations and death by 70 percent”. Retrieved 31/03, 2021, from https://investor.lilly.com/news-releases/news-release-details/new-data-show-treatment-lillys-neutralizing-antibodies.
European Medicines Agency (EMA) (2021). Ema.europa.eu “ema.europa.ue”. Retrieved 31/03, 2021 from https://www.ema.europa.eu/en/news/ema-review-regdanvimab-covid-19-support-national-decisions-early-use.
Miersch S, Ustav M, Li Z, Case JB, Ganaie S, Matusali G, et al. Synthetic antibodies neutralize SARS-CoV-2 infection of mammalian cells. bioRxiv. 2020:2020.06.05.137349.
Miersch S, Li Z, Saberianfar R, Ustav M, Case JB, Blazer L, et al. Tetravalent SARS-CoV-2 neutralizing antibodies show enhanced potency and resistance to escape mutations. bioRxiv. 2020.
Rappazzo CG, Tse LV, Kaku CI, Wrapp D, Sakharkar M, Huang D, et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science. 2021;71(6531):823–9. https://doi.org/10.1126/science.abf4830.
Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell. 2021;184(7):1821–1835.e16. https://doi.org/10.1016/j.cell.2021.02.035.
CAS
Article
PubMed
PubMed Central
Google Scholar
De Gasparo R, Pedotti M, Simonelli L, Nickl P, Muecksch F, Cassaniti I, et al. Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature. 2021.
Brenner S, Jacob F, Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961;190(4776):576–81. https://doi.org/10.1038/190576a0.
CAS
Article
PubMed
Google Scholar
Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8. https://doi.org/10.1126/science.1690918.
CAS
Article
PubMed
Google Scholar
Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. 1989;86(16):6077–81. https://doi.org/10.1073/pnas.86.16.6077.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. https://doi.org/10.1038/nrd.2017.243.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tourrière H, Chebli K, Tazi J. mRNA degradation machines in eukaryotic cells. Biochimie. 2002;84(8):821–37. https://doi.org/10.1016/s0300-9084(02)01445-1.
Article
PubMed
Google Scholar
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6. https://doi.org/10.1038/nature23003.
CAS
Article
PubMed
Google Scholar
Linares-Fernández S, Lacroix C, Exposito JY, Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med. 2020;26(3):311–23. https://doi.org/10.1016/j.molmed.2019.10.002.
CAS
Article
PubMed
Google Scholar
Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. 1993;23(7):1719–22. https://doi.org/10.1002/eji.1830230749.
CAS
Article
PubMed
Google Scholar
Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–50. https://doi.org/10.1056/NEJMoa2027906.
CAS
Article
PubMed
Google Scholar
Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. RNA-based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy study. medRxiv. 2020.
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589–93. https://doi.org/10.1038/s41586-020-2639-4.
CAS
Article
PubMed
Google Scholar
Banerji A, Wickner PG, Saff R, Stone CA Jr, Robinson LB, Long AA, et al. mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and approach. J Allergy Clin Immunol Pract. 2020.
Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, et al. A thermostable mRNA vaccine against COVID-19. Cell. 2020;182(5):1271–83.e16. https://doi.org/10.1016/j.cell.2020.07.024.
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2 - preliminary report. N Engl J Med. 2020;383(20):1920–31. https://doi.org/10.1056/NEJMoa2022483.
CAS
Article
PubMed
Google Scholar
Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. 2020;383(16):1544–55. https://doi.org/10.1056/NEJMoa2024671.
CAS
Article
PubMed
Google Scholar
Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–38. https://doi.org/10.1056/NEJMoa2028436.
CAS
Article
PubMed
Google Scholar
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2020.
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15. https://doi.org/10.1056/NEJMoa2034577.
CAS
Article
Google Scholar
Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med. 2020;384(1):80–2. https://doi.org/10.1056/NEJMc2032195.
Article
PubMed
Google Scholar
Thompson MG, Burgess JL, Naleway AL, Tyner HL, Yoon SK, Meece J, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers – eight U.S. locations, December 2020 – march 2021. MMWR Centers Dis Contr Prev (CDC) Early Release. 2021;70.
Mascola JR, Fauci AS. Novel vaccine technologies for the 21st century. Nat Rev Immunol. 2020;20(2):87–8. https://doi.org/10.1038/s41577-019-0243-3.
CAS
Article
PubMed
Google Scholar
Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodens. Nat Biotechnol. 2021.
Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv. 2020;6(25):eabb5813. https://doi.org/10.1126/sciadv.abb5813.
Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccine-elicited sera. bioRxiv. 2021.01.27.427998.
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. bioRxiv.2021.01.15.426911.
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052.
CAS
Article
PubMed
PubMed Central
Google Scholar
Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, et al. Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death Dis. 2021;12(4):310. https://doi.org/10.1038/s41419-021-03513-1.
CAS
Article
PubMed
PubMed Central
Google Scholar