1 Introduction

Let C be a nonempty closed convex subset of a Banach space X. A mapping \(T \colon C\to C\) is said to be nonexpansive if \(\Vert Tx-Ty\Vert \leq \Vert x-y\Vert \) for all \(x, y \in C\). It is called quasi-nonexpansive [1] if \(F(T)\neq\emptyset\) and \(\Vert Tx-p\Vert \leq \Vert x-p\Vert \) for all \(x \in C\) and for all \(p \in F(T)\), where \(F(T)\) is the set of fixed points of T, i.e., \(F(T) = \{x \in C : Tx = x\}\). Every nonexpansive mapping with \(F(T)\neq \emptyset\) is a quasi-nonexpansive mapping.

In 2008, Suzuki [2] introduced a mapping satisfying condition (C). More accurately, a mapping \(T \colon C\to C\) is said to satisfy condition (C) if

$$\frac{1}{2}\Vert x-Tx\Vert \leq \Vert x-y\Vert \quad\Longrightarrow\quad \Vert Tx-Ty\Vert \leq \Vert x-y\Vert $$

for all \(x,y \in C\). Every nonexpansive mapping satisfies condition (C); also if a mapping satisfies condition (C) and has a fixed point, then it is a quasi-nonexpansive mapping [2].

Fixed point theorems for a mapping satisfying condition (C) were studied by Dhompongsa et al. [3] and Phuengrattana [4]. Khan and Suzuki [5] proved a weak convergence theorem for a mapping satisfying condition (C) in uniformly convex Banach spaces whose dual has the Kadec-Klee property.

In 2013, Karapınar [6] suggested a new modification of mappings satisfying condition (C) to a mapping satisfying (RCSC)-condition.

Definition 1.1

Let T be a mapping on a subset C of a Banach space X. Then T is said to satisfy Reich-Chatterjea-Suzuki-(C) condition ((RCSC)-condition) if

$$\frac{1}{2}\Vert x-Tx\Vert \leq \Vert x-y\Vert \quad\Longrightarrow\quad \Vert Tx-Ty\Vert \leq\frac{1}{3}\bigl(\Vert x-y\Vert +\Vert Tx-y \Vert +\Vert x-Ty\Vert \bigr) $$

for all \(x,y \in C\).

Motivated by the above mentioned works, in this paper, we prove some weak and strong convergence theorems for generalized nonexpansive ((RCSC)-condition) mappings in a uniformly convex Banach space, which has the Kadec-Klee property. Our results generalize the results of Khan and Suzuki [5], Reich [7] to the case of a mapping satisfying (RCSC)-condition. For other works in this direction, please see Mogbademu [8], Saluja [9], Thakur [10] and Zheng [11].

2 Preliminaries

Throughout this paper, we denote by \(\mathbb{N}\) the set of positive integers and by \(\mathbb{R}\) the set of real numbers.

We now recall some definitions and results useful for our main results.

A Banach space X is called uniformly convex [12] if for each \(\varepsilon\in(0,2]\) there is \(\delta> 0\) such that for \(x, y \in X\),

$$\left . \textstyle\begin{array}{r@{}} \Vert x\Vert \leq1 \\ \Vert y\Vert \leq1 \\ \Vert x-y\Vert >\varepsilon \end{array}\displaystyle \right \} \quad\Rightarrow\quad\biggl\Vert \frac{x+y}{2} \biggr\Vert \leq\delta. $$

Lemma 2.1

([12])

Let X be a uniformly convex Banach space. Let \(\{x_{n}\}\) and \(\{y_{n}\}\) be sequences in X satisfying \(\lim_{n\to\infty} \Vert x_{n}\Vert = 1\), \(\lim_{n\to\infty} \Vert y_{n}\Vert = 1\) and \(\lim_{n\to \infty} \Vert x_{n} + y_{n}\Vert = 2\). Then \(\lim_{n\to\infty} \Vert x_{n} - y_{n}\Vert = 0\).

Lemma 2.2

([5])

Let X be a uniformly convex Banach space and let \(\{u_{n}\}\), \(\{v_{n}\}\) and \(\{w_{n}\}\) be sequences in X. Let d and t be real numbers with \(d\in(0, \infty)\) and \(t \in(0, 1)\). Assume that \(\lim_{n\to\infty} \Vert u_{n} - v_{n}\Vert = d\), \(\limsup_{n\to \infty} \Vert u_{n}- w_{n}\Vert \leq(1 - t)d\) and \(\limsup_{n\to\infty} \Vert v_{n} - w_{n}\Vert \leq td\). Then \(\lim_{n\to\infty} \Vert tu_{n} + (1 - t) v_{n} - w_{n}\Vert = 0\).

Proposition 2.1

Let C be a nonempty subset of a Banach space X and \(T : C\to C\) be a mapping satisfying (RCSC)-condition. Then T has the following properties:

  1. (i)

    If T has a fixed point, then it is a quasi-nonexpansive mapping [6], Proposition 6.

  2. (ii)

    If C is closed, then \(F(T)\) is closed; further if X is strictly convex and C is convex, then \(F(T)\) is also convex [6], Proposition 10.

A Banach space X is said to have the Kadec-Klee property if, for every sequence \(\{x_{n}\}\) in X which converges weakly to a point \(x \in X\) with \(\Vert x_{n}\Vert \) converging to \(\Vert x\Vert \), \(\{x_{n}\}\) converges strongly to x. Every uniformly convex Banach space has the Kadec-Klee property [13].

Lemma 2.3

([14, 15])

Let X be a reflexive Banach space whose dual has the Kadec-Klee property. Let \(\{x_{n}\}\) be a bounded sequence in X and let \(y, z\in X\) be weak subsequential limits of \(\{x_{n}\}\). Assume that for every \(t \in[0, 1]\), \(\lim_{n\to\infty} \Vert tx_{n} + (1 - t) y- z\Vert \) exists. Then \(y = z\).

Proposition 2.2

Let C be a nonempty subset of a Banach space X and \(T \colon C\to C\) be a mapping satisfying (RCSC)-condition. Then

  1. (1)

    \(\Vert x-Ty\Vert \leq9\Vert Tx-x\Vert + \Vert x-y\Vert \),

  2. (2)

    \(\Vert y-Ty\Vert \leq9\Vert Tx-x\Vert + 2\Vert x-y\Vert \)

hold for all \(x, y \in C\).

Proof

(1) follows from [6], Corollary 16.

For (2), it follows from (1) that

$$\begin{aligned} \Vert y - Ty\Vert &\leq \Vert y - x\Vert + \Vert x -Ty\Vert \\ &\leq9\Vert x - Tx\Vert + 2 \Vert x - y\Vert . \end{aligned}$$

Thus we have (2). □

3 Main results

In this section, we prove weak and strong convergence theorems. First, we establish some auxiliary results.

The following lemma is an extension of Lemma 8 of [5] to the case of mappings satisfying (RCSC)-condition.

Lemma 3.1

Let C be a nonempty bounded convex subset of a uniformly convex Banach space X, and let \(T \colon C \to C\) be a mapping satisfying (RCSC)-condition. Suppose that for any \(\varepsilon> 0\), there exists \(\xi(\varepsilon) > 0\) such that \(\Vert Tu- u\Vert < \xi (\varepsilon)\), \(\Vert Tv - v\Vert <\xi(\varepsilon)\) for some \(u,v \in C\). Then, for any \(t\in[0, 1]\),

$$\bigl\Vert T\bigl(tu + (1 - t)v\bigr) - \bigl(tu + (1 - t)v\bigr)\bigr\Vert < \varepsilon. $$

Proof

Assume to the contrary that there exist sequences \(\{u_{n}\}, \{v_{n}\} \in C\), \(\{t_{n}\} \in[0, 1]\) and \(\varepsilon> 0\) such that

$$\Vert Tu_{n} - u_{n}\Vert < \frac{1}{n},\qquad \Vert Tv_{n} - v_{n}\Vert < \frac {1}{n} , $$

and

$$\bigl\Vert T\bigl(t_{n}u_{n} + (1 - t_{n})v_{n} \bigr) - \bigl(t_{n}u_{n} + (1 - t_{n})v_{n} \bigr)\bigr\Vert \geq \varepsilon. $$

Setting \(x_{n} = t_{n}u_{n} + (1 - t_{n})v_{n}\) and \(w_{n} = Tx_{n}\), from Proposition 2.2(ii), we get

$$\begin{aligned} 0 &< \varepsilon\leq\liminf_{n\to\infty} \Vert Tx_{n}-x_{n} \Vert \\ &\leq\liminf_{n\to\infty}\bigl(9\Vert Tu_{n}-u_{n} \Vert +2\Vert u_{n}-x_{n}\Vert \bigr) \\ &=2\liminf_{n\to\infty} \Vert u_{n}-x_{n}\Vert . \end{aligned}$$

Similarly, we can show that

$$0< \liminf_{n\to\infty} \Vert v_{n}-x_{n}\Vert , $$

and hence

$$0< \liminf_{n\to\infty} \Vert u_{n}-v_{n}\Vert . $$

Since C is bounded and

$$0< \liminf_{n\to\infty} \Vert v_{n}-x_{n}\Vert =\liminf_{n\to\infty }t_{n}\Vert u_{n}-v_{n} \Vert \leq\liminf_{n\to\infty}t_{n}\times\sup _{n\in\mathbb {N}}\Vert u_{n}-v_{n}\Vert , $$

we get \(0 < \liminf_{n\to\infty} t_{n}\).

Similarly, we can show that \(\limsup_{n\to\infty} t_{n} <1\).

So, without loss of generality, we may assume that \(\Vert u_{n}- v_{n}\Vert \) converges to \(d\in(0, \infty)\) and \(t_{n}\) converges to \(t\in(0, 1)\) as \(n\to\infty\).

Since \(\lim_{n\to\infty} \Vert Tu_{n}-u_{n}\Vert = 0\) and \(0 < \liminf_{n\to\infty} \Vert u_{n}-x_{n}\Vert \), we obtain

$$\frac{1}{2}\Vert Tu_{n}-u_{n}\Vert \leq \Vert u_{n}-x_{n}\Vert $$

for sufficiently large \(n\in\mathbb{N}\).

Since T satisfies (RCSC)-condition, for sufficiently large \(n\in \mathbb{N}\), we have

$$\Vert Tu_{n}-Tx_{n}\Vert \leq\frac{1}{3}\bigl( \Vert u_{n}-x_{n}\Vert +\Vert Tu_{n}-x_{n} \Vert +\Vert u_{n}-Tx_{n}\Vert \bigr). $$

By similar arguments, we have

$$\Vert Tv_{n}-Tx_{n}\Vert \leq\frac{1}{3}\bigl( \Vert v_{n}-x_{n}\Vert +\Vert Tv_{n}-x_{n} \Vert +\Vert v_{n}-Tx_{n}\Vert \bigr) $$

for sufficiently large \(n \in\mathbb{N}\).

Now, using the triangular inequality and Proposition 2.2(i), we have

$$\begin{aligned} &\limsup_{n\to\infty} \Vert u_{n}-w_{n}\Vert \\ &\quad\leq\limsup_{n\to \infty }\bigl(\Vert u_{n}-Tu_{n}\Vert +\Vert Tu_{n}-Tx_{n}\Vert \bigr) \\ &\quad\leq\limsup_{n\to\infty} \biggl(\Vert u_{n}-Tu_{n} \Vert +\frac {1}{3} \bigl(\Vert u_{n}-x_{n}\Vert + \Vert Tu_{n}-x_{n}\Vert +\Vert u_{n}-Tx_{n} \Vert \bigr) \biggr) \\ &\quad\leq\limsup_{n\to\infty} \biggl(\Vert u_{n}-Tu_{n} \Vert +\frac {1}{3} \bigl(\Vert u_{n}-x_{n}\Vert +10\Vert u_{n}-Tu_{n}\Vert +2\Vert u_{n}-x_{n} \Vert \bigr) \biggr) \\ &\quad=(1-t)d, \end{aligned}$$

and

$$\begin{aligned} &\limsup_{n\to\infty} \Vert v_{n}-w_{n}\Vert \\ &\quad\leq\limsup_{n\to \infty}\bigl(\Vert v_{n}-Tv_{n}\Vert +\Vert Tv_{n}-Tx_{n}\Vert \bigr) \\ &\quad\leq\limsup_{n\to\infty} \biggl(\Vert v_{n}-Tv_{n} \Vert +\frac {1}{3} \bigl(\Vert v_{n}-x_{n}\Vert + \Vert Tv_{n}-x_{n}\Vert +\Vert v_{n}-Tx_{n} \Vert \bigr) \biggr) \\ &\quad\leq\limsup_{n\to\infty} \biggl(\Vert v_{n}-Tv_{n} \Vert +\frac {1}{3} \bigl(\Vert v_{n}-x_{n}\Vert +10\Vert v_{n}-Tv_{n}\Vert +2\Vert v_{n}-x_{n} \Vert \bigr) \biggr) \\ &\quad=td. \end{aligned}$$

It then follows from Lemma 2.2 that

$$0 < \varepsilon\leq\lim_{n\to\infty} \Vert x_{n}-w_{n} \Vert = 0, $$

which is a contradiction, and this completes the proof. □

We now establish the demiclosed principle for the mapping satisfying (RCSC)-condition.

Proposition 3.1

Let T be a mapping on a bounded and convex subset C of a uniformly convex Banach space X. Assume that T satisfies (RCSC)-condition. Then \(I-T\) is demiclosed at zero. That is, if \(\{x_{n}\} \in C\) converges weakly to \(x_{0}\in C\) and \(\lim_{n\to\infty} \Vert Tx_{n}-x_{n}\Vert = 0\), then \(Tx_{0} = x_{0}\).

Proof

Let \(\xi\colon(0, \infty) \to(0, \infty)\) be a function satisfying the conclusion of Lemma 3.1. Let \(\{x_{n}\}\) be a sequence converging weakly to \(x_{0}\in C\) and \(\lim_{n\to \infty} \Vert Tx_{n}-x_{n}\Vert = 0\). For arbitrarily chosen \(\varepsilon> 0\), define a strictly decreasing sequence \(\{\varepsilon_{n}\}\) in \((0, \infty)\) by

$$\varepsilon_{1} = \varepsilon \quad\mbox{and}\quad \varepsilon_{n+1} = \frac{\min\{\varepsilon_{n},\xi(\varepsilon_{n})\} }{2}. $$

It is obvious that \(\varepsilon_{n+1} < \xi(\varepsilon_{n})\). Choose a subsequence \(\{x_{f(n)}\}\) of \(\{x_{n}\}\) such that \(\Vert x_{f(n)}-Tx_{f(n)}\Vert < \xi(\varepsilon_{n})\). Since \(x_{0}\) belongs to the closed convex hull of \(\{x_{f(n)} : n \in\mathbb{N}\}\), it is a weak limit of \(\{x_{f(n)}\}\). Hence, there exist \(y\in C\) and \(v\in\mathbb{N}\) such that \(\Vert y-x_{0}\Vert < \varepsilon\) and y belongs to the convex hull of \(\{x_{f(n)} : n = 1, 2,\ldots, v\}\). Using Lemma 3.1, we have \(\Vert Ty- y\Vert < \varepsilon\). Using Proposition 2.2(ii), we obtain

$$\Vert Tx_{0}- x_{0}\Vert \leq9 \Vert Ty- y\Vert + 2 \Vert y- x_{0}\Vert < 11\varepsilon. $$

Since \(\varepsilon> 0\) is arbitrary, we obtain \(Tx_{0} = x_{0}\). □

Lemma 3.2

Let T be a mapping on a bounded and convex subset C of a uniformly convex Banach space X. Assume that T satisfies (RCSC)-condition. For arbitrary \(x_{1} \in C\) and a real number \(\alpha\in[1/2, 1)\), construct a sequence \(\{x_{n}\}\) in C by

$$ x_{n+1} = \alpha T x_{n} + (1 - \alpha) x_{n}. $$
(3.1)

If \(\lim_{n\to\infty} \Vert Tx_{n}-x_{n}\Vert =0\), then \(\lim_{n\to \infty }\Vert tx_{n} + (1-t) p-q\Vert \) exists, where \(p, q \in F(T)\) and \(t \in[0, 1]\).

Proof

Since T satisfies (RCSC)-condition, by Proposition 2.1, it is quasi-nonexpansive. Let \(S = \alpha T + (1-\alpha)I\), then S is a self-mapping on C, and \(F(S) = F(T)\) also S is quasi-nonexpansive, and

$$x_{n+1} = \alpha Tx_{n} + (1-\alpha)x_{n} = Sx_{n} = S^{n}x_{1}. $$

Thus, for any \(q \in F(S)\), we have

$$\begin{aligned} \Vert x_{n+1}-q\Vert &= \Vert Sx_{n}-q\Vert \\ &\leq \Vert x_{n}-q\Vert , \end{aligned}$$

hence the sequence \(\{\Vert x_{n}-q\Vert \}\) is nonincreasing and bounded below. Therefore, it converges.

Since the sequence \(\{\Vert p-q\Vert \}\) obviously converges, we see that \(\lim_{n\to\infty} \Vert tx_{n}+(1-t)p-q\Vert \) exists for \(t=1\) and \(t=0\). Thus it remains to consider \(t\in(0, 1)\).

Let \(\lim_{n\to\infty} \Vert x_{n}-p\Vert = d\). If \(d = 0\), there is nothing to prove. Take \(d > 0\). We have

$$\begin{aligned} \liminf_{m,n\to\infty}\bigl\Vert x_{n}-S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert &\geq\liminf_{m,n\to\infty} \bigl(\Vert x_{n}-p\Vert -\bigl\Vert p-S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \bigr) \\ &\geq\liminf_{m,n\to\infty} \bigl(\Vert x_{n}-p\Vert - \bigl\Vert p-\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \bigr) \\ =& (1-t)d>0 \end{aligned}$$

for all \(l\in\mathbb{N}\cup\{0\}\), where \(S^{0}\) is the identity mapping on C. Then there exists \(\nu\in\mathbb{N}\) such that

$$\frac{1}{2}\Vert x_{n}-Tx_{n}\Vert \leq\bigl\Vert x_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert $$

for all \(l\geq0\) and \(m, n\geq\nu\). Since T satisfies (RCSC)-condition and Proposition 2.2(i), we obtain

$$\begin{aligned} &\bigl\Vert Tx_{n}-T\circ S^{l}\bigl(tx_{m}+(1-t)p \bigr)\bigr\Vert \\ &\quad \leq\frac{1}{3}\bigl\Vert x_{n}-S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert +\frac {1}{3}\bigl\Vert Tx_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\qquad{} +\frac{1}{3}\bigl\Vert x_{n}-T\circ S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert , \end{aligned}$$

and hence

$$\begin{aligned} &\bigl\Vert x_{n+1}-S^{l+1}\bigl(tx_{m}+(1-t)p \bigr)\bigr\Vert \\ & \quad= \bigl\Vert Sx_{n}-S\circ S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\quad \leq\bigl\| \alpha Tx_{n} + (1-\alpha)x_{n}- \alpha T\circ S^{l}\bigl(tx_{m} + (1-t) p\bigr) \\ &\qquad{} -(1-\alpha)S^{l}\bigl(tx_{m} + (1-t)p\bigr) \bigr\| \\ & \quad=\bigl\| \alpha\bigl(Tx_{n}-T\circ S^{l} \bigl(tx_{m} + (1-t)p\bigr)\bigr) \\ & \qquad{}+(1-\alpha) \bigl(x_{n}-S^{l} \bigl(tx_{m} + (1-t)p\bigr)\bigr)\bigr\| \\ & \quad\leq\alpha\bigl\Vert Tx_{n}-T\circ S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\qquad{} +(1-\alpha)\bigl\Vert x_{n}-S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ & \quad\leq\alpha \biggl\{ \frac{1}{3} \bigl(\bigl\Vert x_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert +\bigl\Vert Tx_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\qquad{} +\bigl\Vert x_{n}-T\circ S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \bigr) \biggr\} \\ &\qquad{} +(1-\alpha)\bigl\Vert x_{n}-S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\quad \leq\alpha \biggl\{ \frac{1}{3} \bigl(\bigl\Vert x_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert +\bigl\Vert Tx_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\qquad{} +9\Vert Tx_{n}-x_{n}\Vert +\bigl\Vert x_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \bigr) \biggr\} \\ &\qquad{} +(1-\alpha)\bigl\Vert x_{n}-S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\quad \leq\alpha \biggl\{ \bigl\Vert x_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr) \bigr\Vert +\frac {10}{3}\Vert Tx_{n}-x_{n}\Vert \biggr\} \\ &\qquad{} +(1-\alpha)\bigl\Vert x_{n}-S^{l} \bigl(tx_{m}+(1-t)p\bigr)\bigr\Vert \\ &\quad =\bigl\Vert x_{n}-S^{l}\bigl(tx_{m}+(1-t)p\bigr) \bigr\Vert +\frac{10}{3}\Vert Tx_{n}-x_{n}\Vert \end{aligned}$$

for all \(l\geq0\) and \(m, n \geq\nu\).

Let \(h \colon\mathbb{N} \to[0, \infty)\) be a function defined by

$$h(n)= \bigl\Vert tx_{n}+(1-t)p-q\bigr\Vert . $$

Take two subsequences \(\{f(n)\}\) and \(\{g(n)\}\) of \(\{n\}\) such that \(\nu< f(1)\), \(f(n) < g(n)\) for each \(n\in\mathbb{N}\) and

$$\lim_{n\to\infty}h\bigl(f(n)\bigr) = \liminf_{n\to\infty}h(n),\qquad \lim_{n\to\infty}h\bigl(g(n)\bigr) = \limsup_{n\to\infty}h(n). $$

Set \(u_{n} = x_{g(n)}\), \(v_{n} = p\) and \(w_{n} = S^{g(n)-f(n)}(tx_{f(n)} + (1 - t) p)\). Then we have

$$\begin{aligned}& \lim_{n\to\infty} \Vert u_{n}- v_{n}\Vert = d, \end{aligned}$$
(3.2)
$$\begin{aligned}& \begin{aligned}[b] \limsup_{n\to\infty} \Vert u_{n}-w_{n}\Vert ={}& \limsup_{n\to\infty }\bigl\Vert x_{g(n)}-S^{g(n)-f(n)} \bigl(tx_{f(n)}+(1-t)p\bigr)\bigr\Vert \\ \leq{}&\limsup_{n\to\infty}\bigl\Vert x_{f(n)}- \bigl(tx_{f(n)}+(1-t)p\bigr)\bigr\Vert \\ &{} + \frac{10}{3}\limsup_{n\to\infty} \Vert x_{n}-Tx_{n}\Vert \\ ={}&(1-t)\limsup_{n\to\infty} \Vert x_{f(n)}-p\Vert \\ ={}&(1-t)d, \end{aligned} \end{aligned}$$
(3.3)

and

$$ \limsup_{n\to\infty} \Vert v_{n}-w_{n} \Vert \leq td. $$
(3.4)

By (3.2), (3.3), (3.4) and Lemma 2.2, we have

$$\lim_{n\to\infty} \bigl\Vert tu_{n} + (1 - t) v_{n} - w_{n}\bigr\Vert = 0. $$

Substituting the value of \(u_{n}\), \(v_{n}\) and \(w_{n}\), we have

$$\lim_{n\to\infty}\bigl\Vert tx_{g(n)} + (1 - t)p - S^{g(n)-f(n)}\bigl(tx_{f(n)} + (1-t)p\bigr)\bigr\Vert = 0. $$

Using the quasi-nonexpansiveness of S, we get

$$\begin{aligned} \limsup_{n\to\infty}h(n)={}&\lim_{n\to\infty}h\bigl(g(n) \bigr) \\ \leq{}&\limsup_{n\to\infty} \bigl(\bigl\Vert tx_{g(n)}+(1-t)p-S^{g(n)-f(n)} \bigl(tx_{f(n)}+(1-t)p\bigr)\bigr\Vert \\ &{} +\bigl\Vert S^{g(n)-f(n)}\bigl(tx_{f(n)}+(1-t)p \bigr)-q\bigr\Vert \bigr) \\ ={}& \limsup_{n\to\infty}\bigl\Vert S^{g(n)-f(n)} \bigl(tx_{f(n)}+(1-t)p\bigr)-q\bigr\Vert \\ \leq{}&\limsup_{n\to\infty}\bigl\Vert \bigl(tx_{f(n)}+(1-t)p \bigr)-q\bigr\Vert \\ ={}&\lim_{n\to\infty}h\bigl(f(n)\bigr) \\ ={}&\liminf_{n\to\infty}h(n). \end{aligned}$$

Thus \(\lim_{n\to\infty} h(n) = \lim_{n\to\infty} \Vert tx_{n} + (1 - t) p - q\Vert \) exists. □

Now, we prove a weak convergence theorem.

Theorem 3.1

Let X be a uniformly convex Banach space whose dual has the Kadec-Klee property. Let T be a mapping on a bounded, closed and convex subset C of X. Assume that T satisfies (RCSC)-condition and define a sequence \(\{x_{n}\}\) in C by (3.1). If \(\lim_{n\to\infty} \Vert Tx_{n}-x_{n}\Vert =0\), then \(\{x_{n}\}\) converges weakly to a fixed point of T.

Proof

Let W be the set of all weak subsequential limits of \(\{x_{n}\}\). Since \(\lim_{n\to\infty} \Vert Tx_{n}-x_{n}\Vert \) is equal to 0, by Proposition 3.1 we have \(W \subset F(T)\). Using Lemma 2.3 and Lemma 3.2, W is singleton. But X is a uniformly convex Banach space, hence reflexive. So every sequence \(\{x_{n}\}\) has a subsequence converging weakly to the unique element of W. Since W is singleton, therefore \(\{x_{n}\}\) itself converges weakly to the unique element of W. □

Remark 1

Theorem 3.1 is a generalization of Theorem 11 of [5].

Since the dual of a reflexive Banach space with Fréchet differentiable norm has the Kadec-Klee property [16], as a direct consequence of Theorem 3.1, we get the following result.

Corollary 3.1

Let X be a uniformly convex Banach space whose norm is Fréchet differentiable. Let T be a mapping on a bounded, closed and convex subset C of X. Assume that T satisfies (RCSC)-condition and define a sequence \(\{x_{n}\}\) in C by (3.1). If \(\lim_{n\to\infty} \Vert Tx_{n}-x_{n}\Vert =0\), then \(\{x_{n}\}\) converges weakly to a fixed point of T.

Recall that a mapping \(T \colon C \to C\) is said to satisfy condition (I) [17] if there exists a nondecreasing function \(f :[0,\infty) \to[0,\infty)\) with \(f(0) = 0\), \(f(r) > 0\) for all \(r \in(0, \infty)\) such that \(d(x, Tx) \geq f(d(x, F(T)))\) for all \(x \in C\), where \(d(x, F(T)) = \inf_{p\in F(T)} d(x, p)\).

We now establish a strong convergence theorem.

Theorem 3.2

Let T be a mapping on a bounded, closed and convex subset C of a uniformly convex Banach space X. Assume that T satisfies (RCSC)-condition and define a sequence \(\{x_{n}\}\) in C by (3.1). If \(\lim_{n\to\infty} \Vert Tx_{n}-x_{n}\Vert =0\) and T satisfies condition (I), then \(\{x_{n}\}\) converges strongly to a fixed point of T.

Proof

By Lemma 3.2, we know that \(\lim_{n\to\infty} \Vert x_{n}-p\Vert \) exists for all \(p\in F(T)\), and hence \(\lim_{n\to\infty} d(x_{n}, F(T))\) exists. Assume that \(\lim_{n\to\infty} \Vert x_{n}-p\Vert = r\) for some \(r \geq0\).

If \(r = 0\), then \(\{x_{n}\}\) converges strongly to p and the result follows.

Suppose \(r > 0\). From the hypothesis and condition (I), we have \(\lim_{n\to\infty} \Vert Tx_{n}-x_{n}\Vert =0\) and \(f(d(x_{n}, F(T))) \leq \Vert Tx_{n}-x_{n}\Vert \). This gives \(\lim_{n \to\infty}f(d(x_{n}, F(T))) = 0\). Since f is a nondecreasing function, we have \(\lim_{n\to\infty} d(x_{n}, F(T)) =0\). Thus, there exist a subsequence \(\{x_{n_{k}}\}\) of \(\{x_{n}\}\) and a sequence \(\{y_{k}\} \subset F(T)\) such that

$$\Vert x_{n_{k}} - y_{k}\Vert < \frac{1}{2^{k}} \quad\mbox{for all } k \in\mathbb{N} . $$

Again, we see that

$$\begin{aligned} \Vert x_{n+1}-y_{k}\Vert &= \bigl\Vert \alpha Tx_{n} + (1-\alpha )x_{n}-y_{k}\bigr\Vert \\ &\leq\alpha \Vert Tx_{n}-y_{k}\Vert +(1-\alpha)\Vert x_{n}-y_{k}\Vert \\ &\leq \Vert x_{n}-y_{k}\Vert \\ &< \frac{1}{2^{k}}. \end{aligned}$$

Hence,

$$\begin{aligned} \Vert y_{k+1}-y_{k}\Vert & \leq \Vert y_{k+1}-x_{k+1}\Vert + \Vert x_{k+1} - y_{k}\Vert \\ & \leq\frac{1}{2^{k+1}} + \frac{1}{2^{k}} \\ & < \frac{1}{2^{k-1}} \rightarrow0 \quad\mbox{as } n \rightarrow \infty. \end{aligned}$$

This shows that \(\{y_{k}\}\) is a Cauchy sequence in a complete space, and hence it converges to a point \(p \in X\). Since \(F(T)\) is closed, therefore \(p \in F(T)\) and then \(\{x_{n_{k}}\}\) converges strongly to p. Since \(\lim_{n\to\infty} \Vert x_{n}- p\Vert \) exists, \(x_{n} \to p \in F(T)\). This completes the proof. □

We now give an example of mapping T which satisfies (RCSC)-condition but fails to satisfy condition (C).

Example 1

Let \(X=\mathbb{R}\) with usual metric and \(C=[0,1]\subset X\). Define a mapping \(T\colon C\to C\) by the rule

$$ Tx= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & x \in [0 , \frac{4}{5} ),\\ \frac{x}{2}, & x\in [\frac{4}{5} , 1 ] . \end{array}\displaystyle \right . $$

Set \(x=\frac{9}{10}\) and \(y=\frac{3}{5}\), we see that

$$\frac{1}{2}\vert x-Tx\vert =\frac{9}{40}< \frac{3}{10}= \vert x-y\vert , $$

and

$$\vert Tx-Ty\vert = \frac{9}{20} > \frac{3}{10} =\vert x-y \vert , $$

i.e.,

$$\frac{1}{2}\vert x-Tx\vert \leq \vert x-y\vert \quad\nRightarrow \quad \vert Tx-Ty\vert \leq \vert x-y\vert , $$

hence, T fails to satisfy condition (C).

To verify that T satisfies condition (RCSC), consider the following cases.

Case-I: Let \(x, y \in [0 , \frac{4}{5} )\), then we have

$$\vert Tx-Ty\vert = 0 \leq\frac{1}{3} \bigl[\vert x-y\vert +\vert Tx-y\vert +\vert x-Ty\vert \bigr], $$

\(x, y \in [0 , \frac{4}{5} )\).

Case-II: Let \(x, y \in [\frac{4}{5} , 1 ]\), then

$$\vert Tx-Ty\vert =\biggl\vert \frac{x}{2}-\frac{y}{2}\biggr\vert . $$

Since

$$\begin{aligned}& \vert x-y\vert >\biggl\vert \frac{x}{2}-\frac{y}{2}\biggr\vert =\vert Tx-Ty\vert , \\& \vert Tx-y\vert =\biggl\vert \frac{x}{2}-y\biggr\vert >\biggl\vert \frac {x}{2}-\frac {y}{2}\biggr\vert =\vert Tx-Ty\vert \end{aligned}$$

and

$$\vert x-Ty\vert =\biggl\vert x-\frac{y}{2}\biggr\vert >\biggl\vert \frac {x}{2}-\frac {y}{2}\biggr\vert =\vert Tx-Ty\vert , $$

which implies that

$$\vert Tx-Ty\vert < \frac{1}{3} \bigl[ \vert x-y\vert +\vert Tx-y \vert +\vert x-Ty\vert \bigr] $$

for all \(x, y \in [\frac{4}{5} , 1 ]\).

Case-III: Let \(x \in [0 , \frac{4}{5} )\) and \(y \in [\frac{4}{5} , 1 ]\) or \(x \in [\frac {4}{5} , 1 ]\) and \(y \in [0 , \frac{4}{5} )\). Then

$$\vert Tx-Ty\vert = \frac{y}{2}. $$

Also,

$$ \frac{1}{3} \bigl[ \vert x-y\vert +\vert Tx-y\vert + \vert x-Ty\vert \bigr] = \frac {1}{3} \biggl[y-x + y + \biggl\vert x- \frac{y}{2}\biggr\vert \biggr]. $$
(3.5)

We now have two subcases as follows.

Case-III(A): \(x \geq\frac{y}{2}\), then \(\vert x-\frac{y}{2}\vert = x-\frac{y}{2}\), and by (3.5) we have

$$\begin{aligned} \frac{1}{3} \bigl[ \vert x-y\vert +\vert Tx-y\vert +\vert x-Ty \vert \bigr] &= \frac {y}{2} =\vert Tx-Ty\vert . \end{aligned}$$

Case-III(B): \(x < \frac{y}{2}\), then \(\vert x-\frac{y}{2}\vert = \frac{y}{2}-x\), and by (3.5) we have

$$\begin{aligned} \frac{1}{3} \bigl[ \vert x-y\vert +\vert Tx-y\vert +\vert x-Ty \vert \bigr] &= \frac {1}{3} \biggl[\frac{5y}{2}-2x \biggr] > \frac{1}{3} \biggl[\frac{5y}{2}-y \biggr] = \frac{y}{2} = \vert Tx-Ty\vert . \end{aligned}$$

Hence \(\vert Tx-Ty\vert \leq\frac{1}{3} [ \vert x-y\vert +\vert Tx-y\vert +\vert x-Ty\vert ]\) for all \(x \in [0 , \frac{4}{5} )\) and \(y \in [\frac{4}{5} , 1 ]\).

Case-IV: Let \(x \in [\frac{4}{5} , 1 ]\) and \(y \in [0 , \frac{4}{5} )\). By interchanging the role of x and y in Case-III, we can see that

$$\vert Tx-Ty\vert \leq\frac{1}{3} \bigl[ \vert x-y\vert +\vert Tx-y\vert +\vert x-Ty\vert \bigr] $$

for all \(x \in [\frac{4}{5} , 1 ]\) and \(y \in [0 , \frac{4}{5} )\).

In view of Case-I to Case-IV, we can say that T satisfies condition (RCSC) for all \(x,y\in C\).