Skip to main content
Log in

Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce an iterative process for finding a common element of the set of fixed points of a relatively nonexpansive mapping and the set of solutions of the variational inequality for a Lipschitz-continuous, monotone mapping in a Banach space. We obtain a strong convergence theorem for three sequences generated by this process. Our results improve and extend the corresponding results announced by many others. A simple numerical example is given to support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer Math. J., 4 (1994), 39–54.

    MathSciNet  MATH  Google Scholar 

  2. K. Ball, E. A. Carlen, and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., 115 (1994), 463–482.

    Article  MathSciNet  Google Scholar 

  3. N. Buong, Strong convergence theorem of an iterative method for variational inequalities and fixed point problems in Hilbert spaces, Appl. Math. Comput., 217 (2010), 322–329.

    MathSciNet  MATH  Google Scholar 

  4. L. C. Ceng, N. Hadjisavvas, and N. C. Wong, Strong convergence theorem by hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46 (2010), 635–646.

    Article  MathSciNet  Google Scholar 

  5. Y. Censor, A. Gibali, and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301–323.

    Article  MathSciNet  Google Scholar 

  6. Y. Censor, A. Gibali, and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26 (2011), 827–845.

    Article  MathSciNet  Google Scholar 

  7. Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 148 (2011), 318–335.

    Article  MathSciNet  Google Scholar 

  8. J. M. Chen, L. J. Zhang, and T. G. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl., 334 (2007), 1450–1461.

    Article  MathSciNet  Google Scholar 

  9. C. J. Fang, Y. Wang, and S. Yang, Two algorithms for solving single-valued variational inequalities and fixed point problems, J. Fixed Point Theory Appl., 18 (2016), 27–43.

    Article  MathSciNet  Google Scholar 

  10. H. Iiduka, Acceleration method for convex optimization over the fixed point set of a nonexpansive mapping, Math. Program. Ser. A, 149 (2015), 131–165.

    Article  MathSciNet  Google Scholar 

  11. H. Iiduka, A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping, Optimization, 59 (2010), 873–885.

    Article  MathSciNet  Google Scholar 

  12. H. Iiduka and I. Yamada, A subgradient-type method for the equilibrium problem over the fixed point set and its applications, Optimization, 58 (2009), 251–261.

    Article  MathSciNet  Google Scholar 

  13. H. Iiduka and I. Yamada, A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim., 19 (2009), 1881–1893.

    Article  MathSciNet  Google Scholar 

  14. H. Iiduka and W. Takahashi, Strong convergence studied by a hybrid type method for monotone operators in a Banach space, Nonlinear Anal-theor., 68 (2008), 3679–3688.

    Article  MathSciNet  Google Scholar 

  15. H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inversestrongly monotone mappings, Nonlinear Anal-theor., 61 (2005), 341–350.

    Article  Google Scholar 

  16. H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive nonself mappings and inverse-strongly monotone mappings, J. Conv. Anal., 11 (2004), 69–79.

    MathSciNet  MATH  Google Scholar 

  17. H. Iiduka and W. Takahashi, Weak convergence of a projection algorithm for variational inequalities in a Banach space, J. Math. Anal. Appl., 339 (2008), 668–679.

    Article  MathSciNet  Google Scholar 

  18. G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, Èkon, Mat. Metody, 12 (1976), 747–756, (In Russian).

    MathSciNet  Google Scholar 

  19. R. Kraikaew and S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163 (2014), 399–412.

    Article  MathSciNet  Google Scholar 

  20. J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493–517.

    Article  MathSciNet  Google Scholar 

  21. Y. Liu, Strong convergence theorem for relatively nonexpansive mapping and inverse-strongly-monotone mapping in a Banach space, Appl. Math. Mech-Engl., 30 (2009), 925–932.

    Article  MathSciNet  Google Scholar 

  22. P. E. Maing, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499–1515.

    Article  MathSciNet  Google Scholar 

  23. S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, 134 (2005), 257–266.

    Article  MathSciNet  Google Scholar 

  24. N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz continuous monotone mappings, SIAM J. Optim., 16 (2006), 1230–1241.

    Article  MathSciNet  Google Scholar 

  25. K. Nakajo, Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput., 271 (2015), 251–258.

    MathSciNet  MATH  Google Scholar 

  26. Y. Takahashi, K. Hashimoto, and M. Kato, On sharp uniform convexity, smoothness, and strong type, cotype inequalities, J. Nonlinear Convex Anal., 3 (2002), 267–281.

    MathSciNet  MATH  Google Scholar 

  27. W. Takahashi and M. Toyoda, Weak convergence theorem for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417–428.

    Article  MathSciNet  Google Scholar 

  28. A. R. Tufa, and H. Zegeye, An algorithm for finding a common point of the solutions of fixed point and variational inequality problems in Banach spaces, Arab. J. Math., 4 (2015), 199–213.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China(11401157) and the Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province in College of Mathematics and Information Science of Hebei University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Liu or Hang Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Kong, H. Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces. Indian J Pure Appl Math 50, 1049–1065 (2019). https://doi.org/10.1007/s13226-019-0373-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-019-0373-0

Key words

Navigation