1 Introduction

In the last two decades, quantum calculus plays a significant role in the approximation of functions by a positive linear operator. In 1987, Lupaş [1] introduced the Bernstein (rational) polynomials based on the q-integers. In 1996, Phillips [2] introduced another generalization of Bernstein polynomials based on q-integers. In [323], in the case of \(0< q<1\), many operators have been introduced and examined. Among the most important operators there are q-Szász operators. In [1821] the authors constructed and studied different q-generalizations of Szász–Mirakjan operators in the case \(0< q<1\). In 2012, Mahmudov [24] introduced the q-Szász operator in the case \(q>1\) and studied quantitative estimates of convergence in polynomial weighted spaces and gave the Voronovskaya theorem.

In recent years, the rapid rise of \((p,q)\)-calculus has led to the discovery of new generalizations of Bernstein polynomials containing \((p,q)\)-integers. In 2015, Mursaleen [25] introduced \((p,q)\)-Bernstein operators and studied approximation properties based on a Korovkin-type approximation theorem of \((p,q)\)-Bernstein operators. Also, In 2017, Khan and Lobiyal [26] constructed a \((p,q)\)-analogue of Lupaş-Bernstein functions. In [2739], the authors constructed many operators by using \((p,q)\)-integers and studied their approximation properties. Acar [40] introduced \((p,q)\)-Szász–Mirakjan operators. In addition, Acar gave a recurrence relation for the moments of these operators. In the same year, H. Sharma and C. Gupta [41] introduced the generalization of the \((p,q)\)-Szász–Mirakjan Kantorovich operators and examined their approximation properties. In 2017, Mursaleen, AAH Al-Abied, and Alotaibi [42] constructed new Szász–Mirakjan operators based on \((p,q)\)-calculus and studied weighted approximation and a Voronovskaya-type theorem. Also, \((p,q)\)-analogues of Szász–Mirakjan–Baskakov operators [18] and Stancu-type Szász–Mirakjan–Baskakov operators [43] were defined, and their approximation properties were investigated. Acar, Agrawal, and Kumar [44] introduced a sequence of \((p,q)\)-Szász–Mirakjan operators, and their weighted approximation properties were investigated.

2 Construction of \(K_{l,p,q}\) and moment estimations

We give some basic notations and definitions of the \((p,q)\)-calculus.

The \((p,q)\)-integer and \(( p,q ) \)-factorial are defined by

$$\begin{aligned}& [ l ] _{p,q} :=\left \{ \textstyle\begin{array}{l@{\quad}l}\frac{p^{l}-q^{l}}{p-q}& \text{if }0< q< p\leq1,\\ l &\text{if }p=q=1 \end{array}\displaystyle \right . \quad\text{for }l\in\mathbb{N}, \text{and } [ 0 ] _{p,q}=0, \\& [ l ] _{p,q}! := [ 1 ] _{p,q} [ 2 ] _{p,q}\cdots [ l ] _{p,q} \quad\text{for }l\in\mathbb{N}, \text{and } [ 0 ] _{p,q}!=1. \end{aligned}$$

For integers \(0\leq k\leq l\), the \((p,q)\)-binomial is defined by

$$\left [ \textstyle\begin{array}{c}l\\ k \end{array}\displaystyle \right ] _{p,q}:= \frac{ [ l ] _{p,q}!}{ [ k ] _{p,q}! [ l-k ] _{p,q}!}. $$

The \(( p,q ) \)-derivative \(D_{p,q}g\) of a function \(g(z)\) is defined by

$$( D_{p,q}g ) ( z ) :=\frac{g ( pz ) -g ( qz ) }{ ( p-q ) z},\quad z\neq0,\qquad ( D_{p,q}g ) ( 0 ) =g^{{\prime}}(0) $$

The product and quotient formulae for the \((p,q)\)-derivative are as follows:

$$\begin{aligned}& D_{p,q} \bigl( f ( z ) g ( z ) \bigr) =g(pz)D_{p,q} \bigl( f ( z ) \bigr) +f(qz)D_{p,q} \bigl( g ( z ) \bigr), \end{aligned}$$
(1)
$$\begin{aligned}& D_{p,q} \biggl( \frac{f ( z ) }{g ( z ) } \biggr) = \frac{g(pz)D_{p,q} ( f ( z ) ) -f(pz)D_{p,q} ( g ( z ) ) }{g(pz)g(qz)} . \end{aligned}$$
(2)

It is known that

$$ D_{p,q}z^{l}= [ l ] _{p,q}z^{l-1}. $$
(3)

The \((p,q)\)-analogues of an exponential function, denoted by \(e_{p,q} ( z ) \) and \(E_{p,q} ( z ) \), are defined by

$$ e_{p,q} ( z ) :=\sum_{k=0}^{\infty} \frac{p^{\frac {k(k-1)}{2}}z^{k}}{ [ k ] _{p,q}!},\qquad E_{p,q} ( z ) =\sum _{k=0}^{\infty}\frac{q^{\frac{k(k-1)}{2}}z^{k}}{ [ k ] _{p,q}!}, $$

and the \((p,q)\)-derivatives of \(e_{p,q} ( az ) \) and \(E_{p,q} ( z ) \) are

$$ D_{p,q}e_{p,q} ( az ) =ae_{p,q} ( apz ) ,\qquad D_{p,q}E_{p,q} ( az ) =ae_{p,q} ( aqz ). $$

Further, the \((p,q)\)-power is defined by

$$ ( z-y ) _{p,q}^{l}= ( z-y ) ( pz-qy ) \bigl( p^{2}z-q^{2}y \bigr) \cdots \bigl( p^{l-1}z-q^{l-1}y \bigr) . $$
(4)

For any integer l,

$$ D_{p,q} ( z-y ) _{p,q}^{l}= [ l ] _{p,q} ( pz-y ) _{p,q}^{l-1}, $$
(5)

and \(D_{p,q} ( z-y ) _{p,q}^{0}=0\).

The formula of the kth \((p,q)\)-derivative of the polynomial \(( z-y ) _{p,q}^{l} \)is

$$ D_{p,q}^{k} ( z-y ) _{p,q}^{l}=p^{\binom{k}{2}} \frac{ [ l ] _{p,q}!}{ [ l-k ] _{p,q}!} \bigl( p^{k}z-y \bigr) _{p,q}^{l-k}, $$
(6)

where \(l\in \mathbb{Z} _{+}\) and \(0\leq k\leq l\).

The \((p,q)\)-analogue of the Taylor formulas for any function \(g(z)\) is defined by

$$ g(z)=\sum_{k=0}^{l} ( -1 ) ^{k}q^{-\binom{k}{2}}\frac{ ( D_{p,q}^{k}g ) ( zq^{-k} ) (z-t)_{p,q}^{k}}{ [ k ] _{p,q}!} . $$
(7)

Let \(C_{\beta}\) denote the set of all real-valued continuous functions g on \([ 0,\infty ) \) such that \(w_{\beta}g\) is bounded and uniformly continuous on \([ 0,\infty ) \) endowed with the norm

$$\Vert g \Vert _{m}:=\sup_{z\in [ 0,\infty ) }w_{\beta } \bigl\vert g ( z ) \bigr\vert , $$

where \(w_{0}(z)=1\), and \(w_{\beta}(z)=\frac{1}{1+z^{\beta}}\) for \(\beta \in \mathbb{N}\).

The corresponding Lipschitz class is given for \(0<\alpha\leq2\) by

$$\begin{gathered} \Delta_{j}^{2}g(z):=g(z+2j)-2g(z+j)+g(z), \\ w_{\beta}^{2}(g;\gamma):=\sup_{0< j\leq\gamma} \bigl\Vert \Delta _{j}^{2}g \bigr\Vert ,\qquad\text{Lip}_{\beta}^{2}\alpha:= \bigl\{ g\in C_{\beta}:w_{\beta}^{2}(g;\gamma)=0 \bigl( \gamma^{\alpha} \bigr) ,\gamma\rightarrow0^{+} \bigr\} .\end{gathered} $$

Now we introduce the \(( p,q ) \)-Szász–Mirakjan operator.

Definition 1

Let \(0< q< p\leq1\) and \(l\in\mathbb{N}\). For \(g: [ 0,\infty ) \rightarrow R\), we define the \(( p,q )\)-Szász–Mirakjan operator as

$$ K_{l,p,q} ( g;z ) :=\sum_{k=0}^{\infty}g \biggl( \frac {p^{l-k} [ k ] _{p,q}}{ [ l ] _{p,q}} \biggr) \frac{p^{k(k-l)}}{q^{k ( k-1 ) /2}}\frac{ [ l ] _{p,q}^{k} z^{k}}{ [ k ] _{p,q}!}e_{p,q} \bigl( - [ l ] _{p,q} p^{k-l+1}q^{-k}z \bigr) . $$
(8)

It is clear that the operator \(K_{l,p,q}\) is linear and positive. It is known that the moments \(K_{l,p,q} ( t^{m};z ) \) play a fundamental role in the approximation theory of positive operators.

Lemma 2

Let\(0< q< p\leq1\)and\(m\in \mathbb{N} \). We have the following recurrence formula:

$$ K_{l,p,q} \bigl( t^{m+1};z \bigr) =\sum _{j=0}^{m}\left ( \textstyle\begin{array} [c]{c}m\\ j \end{array}\displaystyle \right ) \frac{zq^{j}p^{m(l-1)-lj}}{ [ l ] _{p,q}^{m-j}}K_{l,p,q} \bigl( t^{j};pq^{-1}z \bigr) . $$
(9)

Proof

According to the definition of \(K_{l,p,q}\) (8), we have

$$\begin{gathered} K_{l,p,q} \bigl( t^{m+1};z \bigr) \\ \quad =\sum_{k=0}^{\infty}\frac{p^{ ( l-k ) (m+1)} [ k ] _{p,q}^{m+1}}{ [ l ] _{p,q}^{m+1}} \frac{p^{k(k-l)}}{q^{k ( k-1 ) /2}}\frac{ [ l ] _{p,q}^{k}z^{k}}{ [ k ] _{p,q}!}e_{p,q} \bigl( - [ l ] _{p,q} p^{k-l+1}q^{-k}z \bigr) \\ \quad =\sum_{k=1}^{\infty}\frac{p^{ ( l-k ) (m+1)} [ k ] _{p,q}^{m}}{ [ l ] _{p,q}^{m}} \frac{p^{k(k-l)}}{q^{k ( k-1 ) /2}}\frac{ [ l ] _{p,q}^{k-1} z^{k}}{ [ k-1 ] _{p,q}!}e_{p,q} \bigl( - [ l ] _{p,q} p^{k-l+1}q^{-k}z \bigr) .\end{gathered} $$

Next, we use the identity \(q [ k ] _{p,q}+p^{k}= [ k+1 ] _{p,q}\) to get the desired formula

$$\begin{gathered} K_{l,p,q} \bigl( t^{m+1};z \bigr) \\ \quad =\sum_{k=0}^{\infty}\frac{p^{ ( l-k-1 ) (m+1)} ( q [ k ] _{p,q}+p^{k} ) ^{m}}{ [ l ] _{p,q}^{m}}\frac{p^{(k+1)(k-l+1)}}{q^{k ( k+1 ) /2}}\frac{ [ l ] ^{k}z^{k+1}}{ [ k ] _{p,q}!}e_{p,q} \bigl( - [ l ] _{p,q} p^{k-l+2}q^{-k-1}z \bigr) \\ \quad =\sum_{k=0}^{\infty}\frac{1}{ [ l ] _{p,q}^{m}} \sum_{j=0}^{m}\left ( \textstyle\begin{array} [c]{c}m\\ j \end{array}\displaystyle \right ) q^{j} [ k ] _{p,q}^{j} p^{k ( m-j ) }p^{(l-k-1)(m+1)} \frac{p^{(k+1)(k-l+1)}}{q^{k ( k+1 ) /2}}\frac{ [ l ] _{p,q}^{k}z^{k+1}}{ [ k ] _{p,q}!} \\ \qquad{} \times e_{p,q} \bigl( - [ l ] _{p,q} p^{k-l+2}q^{-k-1}z \bigr) \\ \quad =\sum_{j=0}^{m}\left ( \textstyle\begin{array} [c]{c}m\\ j \end{array}\displaystyle \right ) \frac{zq^{j}p^{m(l-1)-lj}}{ [ l ] _{p,q}^{m-j}}\sum _{k=0}^{\infty}\frac{p^{ ( l-k ) j} [ k ] _{p,q}^{j}}{ [ l ] _{p,q}^{j}} \frac{p^{k(k-l)}}{q^{k ( k-1 ) /2} }\frac{ [ l ] _{p,q}^{k}p^{k}z^{k}}{ [ k ] _{p,q}!q^{k}}e_{q} \bigl( - [ l ] _{p,q}p^{k-l+2}q^{-k-1}z \bigr) \\ \quad =\sum_{j=0}^{m}\left ( \textstyle\begin{array} [c]{c}m\\ j \end{array}\displaystyle \right ) \frac{zq^{j}p^{m(l-1)-lj}}{ [ l ] _{p,q}^{m-j}}K_{l,p,q} \bigl( t^{j};pq^{-1}z \bigr) .\end{gathered} $$

 □

Lemma 3

Let\(0< q< p\leq1\), \(z\in [ 0,\infty ) \), \(l\in l\), and\(k\geq0\). We have the following identities related to the\(( p,q ) \)-derivative:

$$\begin{aligned}& zD_{p,q}s_{lk} ( p,q;z ) = [ l ] _{p,q} \biggl( \frac{p^{-k} [ k ] _{p,q}}{ [ l ] _{p,q}}-zp^{-(l-1)} \biggr) s_{lk} ( p,q;pz ) , \\& K_{l,p,q} \bigl( t^{m+1};z \bigr) =\frac{z}{ [ l ] p^{-(l-1)}}D_{p,q}K_{l,p,q} \biggl( t^{m};\frac{z}{p} \biggr) +zK_{l,p,q} \bigl( t^{m};z \bigr) , \end{aligned}$$
(10)

where\(s_{lk} ( p,q;z ) =\frac{p^{k(k-l)}}{q^{k ( k-1 ) /2}}\frac{ [ l ] _{p,q}^{k} z^{k}}{ [ k ] _{p,q}!}e_{p,q} ( - [ l ] _{p,q} p^{k-l+1}q^{-k}z ) \).

Proof

We take the \((p,q)\)-derivative of \(s_{lk} ( p,q;z ) \):

$$\begin{aligned} D_{p,q}s_{lk} ( p,q;z ) & =\frac{p^{k ( k-l ) }}{q^{k ( k-1 ) /2} [ k ] _{p,q}!}D_{p,q} \bigl( z^{k}e_{p,q} \bigl( - [ l ] _{p,q}p^{k-l+1}q^{-k}z \bigr) \bigr) \\ & =\frac{p^{k ( k-l ) }}{q^{k ( k-1 ) /2} [ k ] _{p,q}!} \bigl( [ k ] _{p,q}z^{k-1}e_{p,q} \bigl( - [ l ] _{p,q}p^{k-l+1}q^{-k} ( pz ) \bigr) \bigr) \\ & =\frac{p^{k ( k-l ) }}{q^{k ( k-1 ) /2} [ k ] _{p,q}!} \bigl( (qz)^{k} [ l ] _{p,q} p^{k-l+1}q^{-k} e_{p,q} \bigl( - [ l ] _{p,q}p^{k-l+1}q^{-k} ( pz ) \bigr) \bigr) . \end{aligned}$$

Then

$$\begin{aligned} zD_{p,q}s_{lk} ( p,q;z ) & =p^{-k} [ k ] _{p,q}\frac{ p^{k ( k-l ) }}{q^{k ( k-1 ) /2}}\frac{ ( pz ) ^{k}}{ [ k ] _{p,q}!}e_{p,q} \bigl( - [ l ] _{p,q}p^{k-l+1}q^{-k} ( pz ) \bigr) \\ &\quad -z [ l ] _{p,q}p^{-(l-1)}\frac{ p^{k ( k-l ) }}{q^{k ( k-1 ) /2}} \frac{ ( pz ) ^{k}}{ [ k ] _{p,q}!}e_{p,q} \bigl( - [ l ] _{p,q}p^{k-l+1}q^{-k} ( pz ) \bigr) \\ & =p^{-k} [ k ] _{p,q}s_{lk} ( p,q;pz ) -z [ l ] _{p,q}p^{-(l-1)}s_{lk} ( p,q;pz ) \\ & = [ l ] _{p,q} \biggl( \frac{p^{-k} [ k ] _{p,q}}{ [ l ] _{p,q}}-z p^{-(l-1)} \biggr) s_{lk} ( p,q;pz ) . \end{aligned}$$

Using the obtained formula and the definition of the operator \(K_{l,p,q}\), we get the second desired formula:

$$\begin{aligned} zD_{p,q}K_{l,p,q} \bigl( t^{m};z \bigr) & = [ l ] \sum_{k=0}^{\infty} \biggl( \frac{p^{ ( l-k ) } [ k ] _{p,q} }{ [ l ] _{p,q}} \biggr) ^{m}p^{-(l-1)} \biggl( \frac{p^{-k} [ k ] _{p,q}}{p^{-(l-1)} [ l ] _{p,q}}-z \biggr) s_{lk} ( p,q;pz ) \\ & = [ l ] \sum_{k=0}^{\infty} \biggl( \frac{ [ k ] _{p,q}}{ [ l ] _{p,q}} \biggr) ^{m+1}p^{(l-k) ( m+1 ) } \frac{p^{-(l-1)}}{p}s_{lk} ( p,q;pz ) \\ & \quad- [ l ] _{p,q} p^{-(l-1)} z\sum _{k=0}^{\infty} \biggl( \frac{ [ k ] _{p,q}}{ [ l ] _{p,q}} \biggr) ^{m}p^{(l-k)m}s_{lk} ( p,q;pz ) \\ & =p^{-l} [ l ] _{p,q}K_{l,p,q} \bigl( t^{m+1};pz \bigr) - [ l ] _{p,q} p^{-(l-1)}zK_{l,p,q} \bigl( t^{m};pz \bigr) . \end{aligned}$$

 □

Lemma 4

For\(0< q< p\leq1\)and\(l\in \mathbb{N} \), we have

$$\begin{aligned}& K_{l,p,q} ( 1;z ) =1,\quad\quad K_{l,p,q} ( t;z ) =z,\qquad K_{l,p,q} \bigl( t^{2};z \bigr) =z^{2}+ \frac{1}{p^{-(l-1)} [ l ] }z, \\& K_{l,p,q} \bigl( t^{3};z \bigr) =z^{3}+ \frac{2p+q}{p^{-(l-1)}p [ l ] _{p,q}}z^{2}+\frac{1}{p^{-2(l-1)} [ l ] _{p,q}^{2}}z, \\& \begin{aligned}K_{l,p,q} \bigl( t^{4};z \bigr) & =z^{4}+ \biggl( \frac{3p^{2}+2qp+q^{2}}{p^{2}} \biggr) \frac{z^{3}}{p^{-(l-1)} [ l ] _{p,q}} \\ &\quad + \biggl( \frac{3p^{2}+3pq+q^{2}}{p^{2}} \biggr) \frac{z^{2}}{p^{-2(l-1)} [ l ] _{p,q}^{2}}+ \frac{1}{p^{-3(l-1)} [ l ] _{p,q}^{3}}z.\end{aligned} \end{aligned}$$

Proof

From the \((p,q)\)-Taylor theorem [45] we have

$$\psi_{l} ( t ) =\sum_{k=0}^{\infty} \frac{ ( -1 ) ^{k}q^{-\binom{k}{2}}}{ [ k ] _{p,q}!} \bigl( D_{p,q}^{k}\psi _{l} \bigr) \bigl( zq^{-k} \bigr) ( z\ominus t ) _{p,q}^{k}.$$

For \(t=0\), having in mind the equalities

$$\begin{aligned} ( z ) _{p,q}^{k} & =z^{k}p^{k ( k-1 ) /2}, D_{p,q}^{k}e_{p,q} \bigl( - [ l ] _{p,q} p^{-(l-1)}z \bigr) \\ & = ( -1 ) ^{k}p^{k ( k-1 ) /2}p^{-(l-1)k} [ l ] _{p,q}^{k}e_{q} \bigl( - [ l ] _{p,q} p^{-(l-1)}p^{k}z \bigr) \end{aligned}$$

for \(\psi_{l} ( z ) =e_{p,q} ( - [ l ] _{p,q} p^{-(l-1)}z ) \), we get the formula

$$\begin{aligned} 1 & =\psi_{l} ( 0 ) =\sum_{k=0}^{\infty} \frac{ ( -1 ) ^{k} q^{-\binom{k}{2}} ( z ) _{p,q}^{k}}{ [ k ] _{p,q}!} \bigl( D_{p,q}^{k} \varphi_{l} \bigr) \bigl( zq^{-k} \bigr) \\ & =\sum_{k=0}^{\infty}\frac{ ( -1 ) ^{k} q^{-\binom{k}{2} }z^{k}p^{k ( k-l ) }, }{ [ k ] _{q}!q^{k ( k-1 ) /2}} ( -1 ) ^{k} [ l ] _{p,q}^{k}e_{p,q} \bigl( - [ l ] _{p,q} p^{-(l-1-k)}q^{-k}z \bigr) \\ & =\sum_{k=0}^{\infty}\frac{ [ l ] _{p,q}^{k} z^{k}}{ [ k ] _{p,q}!p^{-k ( k-1 ) /2}} \biggl( \frac{p}{q} \biggr) ^{k ( k-1 ) /2}p^{-(l-1)k}e_{p,q} \biggl( - [ l ] _{p,q} p^{-(l-1)} \biggl( \frac{p}{q} \biggr) ^{k}z \biggr) , \end{aligned}$$

that is, \(K_{l,p,q} ( 1;z ) =1\).

For \(i=2,3,4\), recurrence formula (10) gives us the following results:

$$\begin{aligned}& \begin{aligned} K_{l,p,q} \bigl( t^{2};z \bigr) & =\frac{z}{p^{-(l-1)} [ l ] _{p,q}} \biggl\{ D_{p,q}K_{l,p,q} \biggl( t;\frac{z}{p} \biggr) +\frac{ [ l ] _{p,q}}{p^{(l-1)}}K_{l,p,q} ( t;z ) \biggr\} \\ & =\frac{z}{p^{-(l-1)} [ l ] _{p,q}} \biggl\{ 1+\frac{ [ l ] _{p,q}}{p^{(l-1)}}z \biggr\} = \frac{z}{p^{-(l-1)} [ l ] _{p,q}}+z^{2}, \end{aligned} \\& \begin{aligned} K_{l,p,q} \bigl( t^{3};z \bigr) & =\frac{z}{p^{-(l-1)} [ l ] _{p,q}}D_{p,q}K_{l,p,q} \biggl( t^{2};\frac{z}{p} \biggr) +zK_{l,p,q} \bigl( t^{2};z \bigr) \\ & =\frac{z}{p^{-(l-1)} [ l ] _{p,q}}\frac{1}{ [ l ] _{p,q}p^{-(l-1)}}+ [ 2 ] _{p,q} \frac{z}{p}+z \biggl\{ z^{2}+\frac {z}{p^{-(l-1)} [ l ] _{p,q}} \biggr\} \\ & =z^{3}+\frac{ ( 2p+q ) }{p^{-(l-2)} [ l ] _{p,q}}z^{2}+ \frac{z}{ [ l ] _{p,q}^{2}p^{-2(l-1)}}, \end{aligned} \\& \begin{aligned} K_{l,p,q} \bigl( t^{4};z \bigr) & =\frac{z}{p^{-(l-1)} [ l ] _{p,q}}D_{p,q}K_{l,p,q} \biggl( t^{3};\frac{z}{p} \biggr) +zK_{l,p,q} \bigl( t^{3};z \bigr) \\ & =\frac{z}{p^{-(l-1)} [ l ] _{p,q}} \biggl\{ \frac{ [ 3 ] _{p,q}z^{2}}{p^{2}}+\frac{ [ 2 ] _{p,q} ( 2p+q ) }{pp^{-(l-2)} [ l ] _{p,q}}z+ \frac{1}{ [ l ] _{p,q}^{2}p^{-2(l-1)}} \biggr\} \\ &\quad +z \biggl\{ z^{3}+\frac{ ( 2p+q ) }{p^{-(l-2)} [ l ] _{p,q}}z^{2}+ \frac{z}{ [ l ] _{p,q}^{2}p^{-2(l-1)}} \biggr\} \\ & =z^{4}+ \biggl( +\frac{3p^{2}+2qp+q^{2}}{p^{2}} \biggr) \frac{z^{3}}{p^{-(l-1)} [ l ] _{p,q}} \\ & \quad+ \biggl( \frac{3p^{2}+3pq+q^{2}}{p^{2}} \biggr) \frac{z^{2}}{p^{-2(l-1)} [ l ] ^{2}}+ \frac{1}{p^{-3(l-1)} [ l ] ^{3}}z. \end{aligned} \end{aligned}$$

 □

Lemma 5

For every\(z\in [ 0,\infty ) \), we have

$$\begin{aligned}& K_{l,p,q} \bigl( ( t-z ) ;z \bigr) =0, \end{aligned}$$
(11)
$$\begin{aligned}& K_{l,p,q} \bigl( ( t-z ) ^{2};z \bigr) = \frac{z}{p^{-(l-1)} [ l ] _{p,q}}, \\& K_{l,p,q} \bigl( ( t-z ) ^{3};z \bigr) = \frac{1}{ [ l ] _{p,q}^{2} p^{-2(l-1)}}z+\frac{z^{2}}{p^{-(l-1)} [ l ] _{p,q}} \biggl( \frac{q}{p}-1 \biggr) , \\& K_{l,p,q} \bigl( ( t-z ) ^{4};z \bigr) = \frac{1}{ [ l ] _{p,q}^{3} p^{-3(l-1)}}z + \biggl( \frac{3pq+q^{2}-p^{2}}{p^{2}} \biggr) \frac{z^{2}}{ [ l ] _{p,q}^{2} p^{-2(l-1)}}+ \frac{ ( p-q ) ^{2}z^{3}}{p^{2}p^{-(l-1)} [ l ] _{p,q}}. \end{aligned}$$
(12)

Proof

In fact, we may easily calculate third- and fourth-order central moments as follows:

$$\begin{aligned}& \begin{aligned} K_{l,p,q} \bigl( ( t-z ) ^{3};z \bigr) & =K_{l,p,q} \bigl( t^{3};z \bigr) -3zK_{l,p,q} \bigl( t^{2};z \bigr) +3z^{2}K_{l,p,q} ( t;z ) -z^{3} \\ & = \biggl( z^{3}+\frac{2p+q}{ [ l ] _{p,q} pp^{-(l-1)}}z^{2}+ \frac{1}{ [ l ] _{p,q}^{2}p^{-2(l-1)}}z \biggr) \\ & \quad-3z \biggl( z^{2}+\frac{z}{ [ l ] _{p,q} p^{-(l-1)}} \biggr) +3z^{3}-z^{3} \\ & =\frac{1}{ [ l ] _{p,q}^{2} p^{-2(l-1)}}z+\frac{z^{2} ( q-p ) }{pp^{-(l-1)} [ l ] _{p,q}}, \end{aligned} \\& \begin{aligned} & K_{l,p,q} \bigl( ( t-z ) ^{4};z \bigr) \\ &\quad =K_{l,p,q} \bigl( t^{4};z \bigr) -4zK_{l,p,q} \bigl( t^{3};z \bigr) +6z^{2}K_{l,p,q} \bigl( t^{2};z \bigr) -4z^{3}K_{l,p,q} ( t;z ) +z^{4} \\ &\quad =z^{4}+ \biggl( \frac{3p^{2}+2qp+q^{2}}{p^{2}} \biggr) \frac{z^{3}}{p^{-(l-1)} [ l ] _{p,q}}+ \biggl( \frac{3p^{2}+3pq+q^{2}}{p^{2} } \biggr) \frac{z^{2}}{p^{-2(l-1)} [ l ] ^{2}}+ \frac{1}{p^{-3(l-1)} [ l ] ^{3}}z \\ &\qquad -4z \biggl( z^{3}+\frac{ ( 2p+q ) }{p^{-(l-2)} [ l ] _{p,q}}z^{2}+ \frac{z}{ [ l ] _{p,q}^{2}p^{-2(l-1)}} \biggr) +6z^{2} \biggl( \frac{z}{p^{-(l-1)} [ l ] _{p,q}}+z^{2} \biggr) -4z^{4}+z^{4} \\ &\quad =\frac{1}{ [ l ] _{p,q}^{3} p^{-3(l-1)}}z+ \biggl( \frac {3pq+q^{2}-p^{2}}{p^{2}} \biggr) \frac{z^{2}}{ [ l ] _{p,q}^{2} p^{-2(l-1)}}+\frac{ ( p-q ) ^{2}z^{3}}{p^{2}p^{-(l-1)} [ l ] _{p,q}}.\end{aligned} \end{aligned}$$

 □

Remark 6

For \(0< q< p \leq1\),

$$\lim_{l\rightarrow\infty} [ l ] _{p,q}=0\quad\text{or}\quad \frac{1}{p-q}.$$

In our study, we assume that \(q=q_{l}\in ( 0,1 ) \) and \(p=p_{l}\in ( q,1 ] \) are such that

$$\lim_{l\rightarrow\infty}q_{l}=1,\qquad\lim_{l\rightarrow \infty } p_{l}=1, $$

and

$$\lim_{l\rightarrow\infty}q_{l}^{l}=1,\qquad \lim_{l\rightarrow \infty }p_{l}^{l}=1. $$

Therefore

$$\lim_{l\rightarrow\infty} [ l ] _{p_{l},q_{l}}=\infty. $$

For all \(0< q< p\leq1\) and \(j\geq0\), the \(( p,q ) \)-difference operators are defined as

$$\Delta_{p,q}^{0}g(z_{j})=0,\qquad \Delta_{p,q}^{1}g(z_{j})= \Delta_{p,q}g(z_{j}), $$

and

$$\Delta_{p,q}^{k+1}g(z_{j})=p^{k} \Delta_{p,q}^{k}g(z_{j+1})-q^{k} \Delta _{p,q}^{k}g(z_{j+1}), $$

where \(z_{j}=\frac{p^{l-j} [ j ] _{p,q}}{ [ l ] _{p,q}}\). Using this definition, we can prove the following lemmas.

Lemma 7

For all\(0< q< p\leq1\)and\(j,k\in \mathbb{N} \cup \{ 0 \}\), we have

$$g [ z_{j,}z_{j+1},\ldots,z_{j+k} ] = \frac{p^{-(l-1)k} [ l ] _{p,q}^{k} p^{k(k-1)/2}\Delta _{p,q}^{k}g(z_{j})}{p^{-k(2j+k-1)/2}q^{k(2j+k-1)/2} [ k ] _{p,q}!}. $$

Lemma 8

For all\(0< q< p\leq1\), we have

$$\Delta_{p,q}^{k}g(z_{0})=g \biggl[ 0, \frac{1}{p^{-(l-1)} [ l ] _{p,q}},\ldots,\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}} \biggr] \frac{ q^{k(k-1)/2} [ k ] _{p,q}!}{p^{k(k-l)} [ l ] _{p,q}^{k}}. $$

Lemma 9

We have

$$\Delta_{p,q}^{k}g(z_{j})=\sum _{i=0}^{k}\frac{ ( -1 ) ^{i}q^{\frac{i(i-1)}{2}}p^{-i(k-i)}}{p^{\frac{i(i-1)}{2}}}\left [ \textstyle\begin{array}{c}k\\ i \end{array}\displaystyle \right ] _{p,q}g(z_{j+k-i}). $$

Lemma 10

The\((p,q)\)-Szász–Mirakjan operator can be represented as

$$K_{l,p,q} ( g;z ) =\sum_{k=0}^{\infty}g \biggl[ 0,\frac {1}{p^{-(l-1)} [ l ] _{p,q}},\ldots,\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}} \biggr] z^{k}. $$

Proof

Indeed,

$$\begin{aligned} K_{l,p,q} ( g;z ) & =\sum_{k=0}^{\infty}g \biggl( \frac {p^{l-k} [ k ] _{p,q}}{ [ l ] _{p,q}} \biggr) \frac{p^{k(k-l)}}{q^{k ( k-1 ) /2}}\frac{ [ l ] _{p,q}^{k} z^{k}}{ [ k ] _{p,q}!}e_{p,q} \bigl( - [ l ] _{p,q} p^{k-l+1}q^{-k}z \bigr) \\ & =\sum_{k=0}^{\infty} g \biggl( \frac{p^{l-k} [ k ] _{p,q}}{ [ l ] _{p,q}} \biggr) \frac{p^{k(k-l)}}{q^{k ( k-1 ) /2}}\frac{ [ l ] _{p,q}^{k} z^{k}}{ [ k ] _{p,q}!}\sum_{j=0}^{\infty} \frac{ ( -1 ) ^{j} [ l ] _{p,q}^{j} p^{ ( k-l+1 ) j} z^{j}}{p^{-j(j-1)/2} q^{kj} [ j ] _{p,q}!} \\ & =\sum_{k=0}^{\infty}\sum _{j=0}^{k} g \biggl( \frac{p^{l-k+j} [ k-j ] _{p,q}}{ [ l ] _{p,q}} \biggr) \frac{p^{ ( k-j ) (k-j-l)}}{q^{ ( k-j ) (k-j-1)/2}}\\ &\quad\times \frac{ [ l ] _{p,q}^{k-j} z^{k-j}}{ [ k-j ] _{p,q}!}\frac{ ( -1 ) ^{j} [ l ] _{p,q}^{j} p^{ ( k-j-l+1 ) j} z^{j}}{p^{-j(j-1)/2} q^{ ( k-j ) j} [ j ] _{p,q}!} \\ & =\sum_{k=0}^{\infty}\Delta_{p,q}^{k}g(z_{0}) \frac{p^{k(k-l)} [ l ] _{p,q}^{k} z^{k}}{q^{\frac{k(k-1)}{2}} [ k ] _{p,q}!}. \end{aligned}$$

 □

The next result gives an explicit formula for the moments \(K_{l,p,q} ( t^{m};z ) \) in terms of Stirling numbers, which is a \((p,q)\)-analogue of Becker’s formula; see [46].

Lemma 11

For\(0< q< p\leq1\)and\(m\in l\), we have

$$ K_{l,p,q} \bigl( t^{m};z \bigr) =\sum _{k=1}^{m}\mathbb{S}_{p,q} ( m,k ) \frac{z^{k}}{p^{-(l-1)(m-k)} [ l ] _{p,q}^{m-k}}, $$
(13)

where

$$\mathbb{S}_{p,q} ( m,k ) =\frac{1}{q^{\frac{k(k-1)}{2}}p^{\frac{-k(k-1)}{2}} [ k ] _{p,q}!}\sum _{j=0}^{k}\frac{ ( -1 ) ^{j}q^{\frac{j(j-1)}{2}}}{p^{{\frac{- ( k-j ) (k-j-1)}{2}}}}\left [ \textstyle\begin{array}{c}k\\ j \end{array}\displaystyle \right ] _{p,q}p^{-(k-j-1)m} [ k-j ] _{p,q}^{m}$$

are the second-type Stirling polynomials satisfying the equalities

$$\begin{aligned}& \mathbb{S}_{p,q} ( m+1,j ) =p^{-(j-1)} [ j ] _{p,q}\mathbb{S}_{p,q} ( m,j ) +\mathbb{S}_{p,q} ( m,j-1 ) ,\quad m\geq0, j\geq1, \\& \mathbb{S}_{p,q} ( 0,0 ) =1,\qquad \mathbb{S}_{p,q} ( m,0 ) =0,\quad m>0,\qquad \mathbb{S}_{p,q} ( m,j ) =0,\quad m< j. \end{aligned}$$
(14)

Clearly, \(K_{l,p,q} ( t^{m};z ) \)are polynomials of degreemwithout a constant term.

Proof

Because of \(K_{l,p,q} ( t;z ) =z\) and \(K_{l,p,q} ( t^{2};z ) =z^{2}+\frac{z}{p^{-(l-1)} [ l ] _{p,q}}\), representation (13) holds for \(m=1,2\) with \(\mathbb{S}_{p,q} ( 2,1 ) =1\), \(\mathbb{S}_{p,q} ( 1,1 ) =1\).

Using mathematical induction, assume (13) to be valued for m. Then from Lemma 3 we get

$$\begin{gathered} K_{l,p,q} \bigl( t^{m};z \bigr) =\sum _{k=1}^{m}\mathbb{S}_{p,q} ( m,k ) \frac{z^{k}}{p^{-(l-1)(m-k)} [ l ] _{p,q}^{m-k}}, \\ K_{l,p,q} \bigl( t^{m+1};pz \bigr) \\ \quad =\frac{zp^{l}}{ [ l ] _{p,q }}D_{p,q}K_{l,p,q} \bigl( t^{m};z \bigr) +zpK_{l,p,q} \bigl( t^{m};pz \bigr) \\ \quad =\frac{zp^{l}}{ [ l ] _{p,q}}\sum_{j=1}^{m} [ j ] _{p,q}\mathbb{S}_{p,q} ( m,j ) \frac{z^{j-1}}{p^{-(l-1)(m-j)} [ l ] _{p,q}^{m-j}}+zp\sum_{j=1}^{m} \mathbb{S}_{p,q} ( m,j ) \frac{ ( pz ) ^{j}}{p^{-(l-1)(m-j)} [ l ] _{p,q}^{m-j}} \\ \quad =\frac{1}{p^{-l}}\sum_{j=1}^{m} [ j ] _{p,q}\mathbb{S}_{p,q} ( m,j ) \frac{z^{j}}{p^{-(l-1)(m-j)} [ l ] _{p,q}^{m-j+1}}+\sum_{j=1}^{m} \mathbb{S}_{p,q} ( m,j ) \frac{ ( pz ) ^{j+1}}{p^{-(l-1)(m-j)} [ l ] _{p,q}^{m-j}} \\ \quad =\sum_{j=1}^{m}p^{-(j-1)} [ j ] _{p,q}\mathbb{S}_{p,q} ( m,j ) \frac{ ( zp ) ^{j}}{ p^{-(l-1)(m-j+1)} [ l ] _{p,q}^{m-j+1}}+ \sum_{j=1}^{m}\mathbb{S}_{p,q} ( m,j ) \frac{ ( pz ) ^{j+1}}{p^{-(l-1)(m-j)} [ l ] _{p,q}^{m-j}} \\ \quad =\frac{zp}{p^{-(l-1)m} [ l ] _{p,q}^{m}}\mathbb{S}_{p,q} ( m,1 ) + ( pz ) ^{m+1}\mathbb{S}_{p,q} ( m,m ) \\ \qquad +\sum_{j=2}^{m} \bigl( p^{-(j-1)} [ j ] _{p,q}\mathbb{S}_{p,q} ( m,j ) +\mathbb{S}_{p,q} ( m,j-1 ) \bigr) \frac{ ( zp ) ^{j}}{ p^{-(l-1)(m-j+1)} [ l ] _{p,q}^{m-j+1}}.\end{gathered}$$

 □

Remark 12

For \(p=q=1\), formulae (14) become recurrence formulas satisfied by the second-type Stirling numbers from [8].

3 \(( p,q ) \)-Szász–Mirakjan operators in a polynomial weighted space

Lemma 13

For given any fixed\(\beta\in\mathbb{N}\cup \{ 0 \} \)and\(0< q< p\leq1\), we have

$$ \bigl\Vert K_{l,p,q} ( 1/w_{\beta};z ) \bigr\Vert _{\beta}\leq K_{1} ( p,q,\beta ) ,\quad l\in l, $$
(15)

where\(K_{1} ( p,q,\beta ) \)are positive constants. Moreover, for every\(g\in C_{\beta}\), we have

$$ \bigl\Vert K_{l,p,q} ( g ) \bigr\Vert _{\beta}\leq K_{1} ( p,q,\beta ) \Vert g \Vert _{\beta},\quad l\in l. $$
(16)

Thus\(K_{l,p,q}\)is a linear positive operator from\(C_{\beta}\)into\(C_{\beta}\).

Proof

Inequality (15) is obvious for \(\beta=0\). Let \(\beta\geq1\). Then by (13) we have

$$\begin{aligned} w_{\beta} ( z ) M_{l,q} ( 1/w_{\beta};z ) & =w_{\beta } ( z ) M_{l,q} \bigl( 1+z^{\beta};z \bigr) \\ & =w_{\beta} ( z ) M_{l,q} ( 1;z ) +w_{\beta} ( z ) M_{l,q} \bigl( z^{\beta};z \bigr) \\ & =w_{\beta} ( z ) +w_{\beta} ( z ) \sum _{j=1}^{\beta }\mathbb{S}_{p,q} ( \beta,j ) \frac{z^{j}}{p^{-(l-1)(\beta -j)} [ l ] _{p,q}^{\beta-j}}\leq K_{1} ( p,q,\beta ) , \end{aligned}$$

where \(K_{1} ( p,q,\beta ) >0\) is a constant depending on β, p, and q. From this (15) follows. Moreover, for every \(g\in C_{\beta}\),

$$\bigl\Vert K_{l,p,q} ( g ) \bigr\Vert _{\beta}\leq \Vert g \Vert _{\beta} \bigl\Vert K_{l,p,q} ( 1/w_{\beta} ) \bigr\Vert _{\beta}.$$

By applying (15) we obtain

$$\bigl\Vert K_{l,p,q} ( g ) \bigr\Vert _{\beta}\leq K_{1} ( p,q,\beta ) \Vert g \Vert . $$

 □

Lemma 14

For given any fixed\(\beta\in\mathbb{N}\cup \{ 0 \} \)and\(0< q< p\leq1\), we have

$$ \biggl\Vert K_{l,p,q} \biggl( \frac{ ( t-\cdot ) ^{2}}{w_{\beta } ( t ) };\cdot \biggr) \biggr\Vert _{\beta}\leq\frac{K_{2} ( p,q,\beta ) }{p^{-(l-1)} [ l ] _{p,q}},\quad l\in l, $$
(17)

where\(K_{2} ( p,q,\beta ) \)are positive constants.

Proof

Formula (11) imply (17) for \(\beta=0\). We have

$$K_{l,p,q} \biggl( \frac{ ( t-z ) ^{2}}{w_{\beta} ( t ) };z \biggr) =K_{l,p,q} \bigl( ( t-z ) ^{2};z \bigr) +K_{l,p,q} \bigl( ( t-z ) ^{2}t^{\beta};z \bigr) $$

for \(\beta,l\in\mathbb{N}\). If \(\beta=1\), then we get

$$\begin{aligned} K_{l,p,q} \bigl( ( t-z ) ^{2} ( 1+t ) ;z \bigr) & =K_{l,p,q} \bigl( ( t-z ) ^{2};z \bigr) +K_{l,p,q} \bigl( ( t-z ) ^{2}t;z \bigr) \\ & =K_{l,p,q} \bigl( ( t-z ) ^{3};z \bigr) + ( 1+z ) K_{l,p,q} \bigl( ( t-z ) ^{2};z \bigr) , \end{aligned}$$

which by Lemma 5 yields (17) for \(\beta=1\).

Let \(\beta\geq2\). By applying (13) we get

$$\begin{aligned} & w_{\beta} ( z ) K_{l,p,q} \bigl( ( t-z ) ^{2}t^{\beta};z \bigr) \\ & \quad=w_{\beta} ( z ) \bigl( K_{l,p,q} \bigl( t^{\beta+2};z \bigr) -2zK_{l,p,q} \bigl( t^{\beta+1};z \bigr) +z^{2}K_{l,p,q} \bigl( t^{\beta };z \bigr) \bigr) \\ &\quad =w_{\beta} ( z ) \Biggl( z^{\beta+2}+\sum _{j=1}^{\beta +1}\mathbb{S}_{p,q} ( \beta+2,j ) \frac{z^{j}}{p^{-(l-1) ( \beta+2-j ) } [ l ] _{p,q}^{\beta+2-j}} \\ &\qquad -2z^{\beta+2}-2\sum_{j=1}^{\beta} \mathbb{S}_{p,q} ( \beta +1,j ) \frac{z^{j+1}}{p^{-(l-1) ( \beta+1-j ) } [ l ] _{p,q}^{\beta+1-j}} \\ & \qquad+z^{\beta+2}+\sum_{j=1}^{\beta-1} \mathbb{S}_{p,q} ( \beta,j ) \frac{z^{j+2}}{p^{-(l-1) ( \beta-j ) } [ l ] _{p,q}^{\beta-j}}\Biggr) \\ &\quad =w_{\beta} ( z ) \Biggl( \sum_{j=2}^{\beta} \mathbb{S}_{p,q} ( \beta+2,j ) -2\mathbb{S}_{p,q} ( \beta+1,j ) +\mathbb{S}_{p,q} ( \beta,j-1 ) \Biggr) \frac{z^{j+1}}{p^{-(l-1)(\beta+1-j)} [ l ] _{p,q}^{\beta+1-j}} \\ &\qquad +\mathbb{S}_{p,q} ( \beta+2,1 ) \frac{z}{p^{-(l-1)(\beta +1)} [ l ] _{p,q}^{\beta+1}}+ \bigl( \mathbb{S}_{p,q} ( \beta+2,2 ) -2\mathbb{S}_{p,q} ( p+2,1 ) \bigr) \frac {z^{2}}{p^{-(l-1)\beta} [ l ] _{p,q}^{\beta}} \\ & \quad=w_{\beta} ( z ) \frac{z}{p^{-(l-1)} [ l ] _{p,q}}\mathcal{\wp}_{\beta} ( p,q;z ) , \end{aligned}$$

where \(\mathcal{\wp}_{\beta} ( p,q;z ) \) is a polynomial of degree β. Therefore we have

$$w_{\beta} ( z ) K_{l,p,q} \bigl( ( t-z ) ^{2}t^{\beta };z \bigr) \leq K_{2} ( p,q,\beta ) \frac{z}{p^{-(l-1)} [ l ] _{p,q}}. $$

 □

In the next theorem, we give an approximation property of \(K_{l,p,q}\).

Theorem 15

Let\(g\in C_{p}^{2}\), \(0< q< p\leq1\), and\(z\in{}[ 0,\infty)\). There exist positive constants\(K_{3} ( p,q,\beta ) >0\)such that

$$w_{\beta} ( z ) \bigl\vert K_{l,p,q} ( g;z ) -g ( z ) \bigr\vert \leq K_{3} ( p,q,\beta ) \bigl\Vert g^{\prime\prime} \bigr\Vert \frac{z}{p^{-(l-1)} [ l ] _{p,q}}. $$

Proof

By the Taylor formula

$$g ( t ) =g ( z ) +g^{\prime} ( z ) ( t-z ) + \int_{z}^{t} \int_{z}^{s}g^{\prime\prime} ( u ) \,du \,ds,\quad g\in C_{p}^{2}, $$

we obtain that

$$\begin{aligned} & w_{\beta} ( z ) \bigl\vert K_{l,p,q} ( g;z ) -g ( z ) \bigr\vert \\ &\quad =w_{\beta} ( z ) \biggl\vert K_{l,p,q} \biggl( \int_{z}^{t}\int_{z}^{s}g^{\prime\prime} ( u ) \,du \,ds;z \biggr) \biggr\vert \\ &\quad \leq w_{\beta} ( z ) K_{l,p,q} \biggl( \biggl\vert \int_{z}^{t} \int_{z}^{s}g^{\prime\prime} ( u ) \,du \,ds \biggr\vert ;z \biggr) \\ &\quad \leq w_{\beta} ( z ) K_{l,p,q} \biggl( \bigl\Vert g^{\prime \prime} \bigr\Vert _{\beta} \biggl\vert \int_{z}^{t} \int_{z}^{s} \bigl( 1+u^{m} \bigr) \,du \,ds \biggr\vert ;z \biggr) \\ &\quad \leq w_{\beta} ( z ) \frac{1}{2} \bigl\Vert g^{\prime\prime } \bigr\Vert _{\beta}K_{l,p,q} \bigl( ( t-z ) ^{2} \bigl( 1/w_{\beta} ( z ) +1/w_{\beta} ( t ) \bigr) ;z \bigr) \\ &\quad \leq\frac{1}{2} \bigl\Vert g^{\prime\prime} \bigr\Vert _{\beta} \bigl( K_{l,p,q} \bigl( ( t-z ) ^{2};z \bigr) +w_{\beta} ( z ) M_{l,q} \bigl( ( t-z ) ^{2}w_{\beta} ( t ) ;z \bigr) \bigr) \\ &\quad \leq K_{3} ( p,q,z ) \bigl\Vert g^{\prime\prime} \bigr\Vert _{\beta}\frac{z}{p^{-(l-1)} [ l ] _{p,q}}. \end{aligned}$$

 □

We consider the modified Steklov means

$$g_{h}(z):=\frac{4}{h^{2}} \int_{0}^{\frac{h}{2}} \int_{0}^{\frac{h}{2}} \bigl[ 2g(z+s+t)-g \bigl(z+2(s+t)\bigr) \bigr] \,ds\,dt, $$

which have the following properties:

$$\begin{gathered} g(z)-g_{h}(z) =\frac{4}{h^{2}} \int_{0}^{\frac{h}{2}} \int _{0}^{\frac{h}{2}}\Delta_{s+t}^{2}g(z) \,ds\,dt, \\ g_{h}^{\prime\prime}(z) =h^{-2} \bigl( 8 \Delta_{\frac{h}{2}}^{2}g(z)-\Delta_{h}^{2}g(z) \bigr),\end{gathered} $$

and therefore

$$\begin{gathered} \Vert g-g_{h} \Vert _{\beta} \leq \omega_{\beta}^{2}(g;h), \\ \bigl\Vert g_{h}^{\prime\prime} \bigr\Vert _{\beta} \leq\frac {1}{9h^{2}}\omega_{\beta}^{2}(g;h).\end{gathered} $$

We may prove the following so-called direct approximation theorem.

Theorem 16

For given any\(\beta\in\mathbb{N\cup} \{ 0 \} ,g\in C_{\beta}\), \(z\in{}[0,\infty)\), and\(0< q< p\leq1\), we have

$$w_{\beta}(z) \bigl\vert K_{l,p,q} ( g;z ) -g(z) \bigr\vert \leq M_{\beta}\omega_{\beta}^{2} \biggl( g; \sqrt{\frac{z}{p^{-(l-1)}[l]_{p,q}}} \biggr) =M_{p} \omega_{p}^{2} \biggl( g;\sqrt{\frac{p^{l-1} ( q-p ) z}{ ( q^{l}-p^{l} ) }} \biggr) . $$

Particularly, if\(\mathrm{Lip}_{\beta}^{2}\alpha\)for some\(\alpha\in(0,2]\), then

$$w_{p}(z) \bigl\vert K_{l,p,q} ( g;z ) -g(z) \bigr\vert \leq M_{\beta} \biggl( \frac{z}{p^{-(l-1)}[l]_{p,q}} \biggr) ^{\frac{\alpha}{2}}. $$

Proof

For \(g\in C_{\beta}\) and \(h>0\),

$$\bigl\vert K_{l,p,q}(g;z)-g(z) \bigr\vert \leq \bigl\vert K_{l,p,q} \bigl( ( g-g_{h} ) ;z \bigr) -(g-g_{h}) (z) \bigr\vert + \bigl\vert K_{l,p,q} ( g_{h};z ) -g_{h}(z) \bigr\vert , $$

and therefore

$$\begin{aligned} w_{\beta}(z) \bigl\vert K_{l,p,q} ( g;z ) -g(z) \bigr\vert & \leq \Vert g-g_{h} \Vert _{\beta} \biggl( w_{\beta }(z)K_{l,p,q} \biggl( \frac{1}{w_{\beta}(t)};z \biggr) +1 \biggr) \\ & \quad+K_{3} ( p,q,\beta ) \bigl\Vert g_{h}^{\prime\prime} \bigr\Vert _{\beta}\frac{z}{p^{-(l-1)}[l]_{p,q}}. \end{aligned}$$

Since \(w_{\beta}(z)K_{l,p,q} ( \frac{1}{w_{\beta}(t)};z ) \leq K_{1} ( p,q,\beta ) \),we get that

$$w_{\beta}(z) \bigl\vert K_{l,p,q} ( g;z ) -g(z) \bigr\vert \leq l(p,q,\beta)w_{\beta}^{2}(g,h) \biggl( 1+ \frac {z}{h^{2}p^{-(l-1)}[l]_{p,q}.} \biggr) $$

Thus choosing \(h=\sqrt{\frac{z}{p^{-(l-1)} [ l ] _{p,q}}}\), we complete the proof. □

Corollary 17

If\(\beta\in \mathbb{N} \cup \{ 0 \} \), \(g\in C_{\beta}\), \(0< q< p\leq1\), and\(z\in {}[0,\infty)\), then

$$\lim_{l\rightarrow\infty}K_{l,p,q} ( g;z ) =g(z) $$

uniformly on every\([ c,d ] \), \(0\leq c< d\).

4 Convergence of \(( p,q ) \)-Szász–Mirakjan operators

In [47, Theorem 1] and [48, Theorem1], Totik and de la Cal investigated the class problem of all continuous functions g such that \(K_{l,p,q} ( g ) \) converges to g uniformly on the whole interval \([0,\infty)\) as \(l\rightarrow\infty\). The following thorem is a \(( p,q ) \)-analogue of Theorem 1 in [48].

Theorem 18

Assume that\(g: [ 0,\infty ) \rightarrow \mathbb{R} \)is either bounded or uniformly continuous. Let

$$g^{\ast} ( z ) =g \bigl( z^{2} \bigr) ,\quad z\in [ 0,\infty ) . $$

Then, for all\(t>0\)and\(z\geq0\),

$$ \bigl\vert K_{l,p,q} ( g;z ) -g ( z ) \bigr\vert \leq2\omega \biggl( g^{\ast};\sqrt{\frac{1}{p^{-(l-1)} [ l ] _{p,q}}} \biggr) . $$
(18)

Therefore\(K_{l,p,q} ( g;z ) \)converges toguniformly on\([ 0,\infty ) \)as\(l\rightarrow\infty\)whenever\(g^{\ast}\)is uniformly continuous.

Proof

By the definition of \(g^{\ast}\) we have

$$K_{l,p,q} ( g;z ) =K_{l,p,q} \bigl( g^{\ast} ( \sqrt{\cdot } ) ;z \bigr) . $$

Thus we can write

$$\begin{aligned} \bigl\vert K_{l,p,q} ( g;z ) -g ( z ) \bigr\vert & = \bigl\vert K_{l,p,q} \bigl( g^{\ast} ( \sqrt{\cdot} ) ;z \bigr) -g^{\ast} ( \sqrt{z} ) \bigr\vert \\ & = \Biggl\vert \sum_{k=0}^{\infty} \biggl( g^{\ast} \biggl( \sqrt{\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}} \biggr) -g^{\ast } ( \sqrt{z} ) \biggr) s_{l,k} ( p,q;z ) \Biggr\vert \\ & \leq\sum_{k=0}^{\infty} \biggl\vert \biggl( g^{\ast} \biggl( \sqrt {\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}} \biggr) -g^{\ast} ( \sqrt{z} ) \biggr) \biggr\vert s_{l,k} ( p,q;z ) \\ & \leq\sum_{k=0}^{\infty}\omega \biggl( g^{\ast}; \biggl\vert \sqrt {\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}}-\sqrt {z} \biggr\vert \biggr) s_{l,k} ( q;z ) \\ & \leq\sum_{k=0}^{\infty}\omega \biggl( g^{\ast};\frac{ \vert \sqrt {\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}}-\sqrt {z} \vert }{K_{l,p,q} ( \vert \sqrt{\cdot}-\sqrt{z} \vert ;z ) }K_{l,p,q} \bigl( \vert \sqrt{\cdot}-\sqrt{z} \vert ;z \bigr) \biggr) s_{l,k} ( p,q;z ) . \end{aligned}$$

Finally, from the inequality

$$\omega \bigl( g^{\ast};\alpha\delta \bigr) \leq ( 1+\alpha ) \omega \bigl( g^{\ast};\delta \bigr) ,\quad \alpha,\delta\geq0, $$

we obtain

$$\begin{aligned} \bigl\vert K_{l,p,q} ( g;z ) -g ( z ) \bigr\vert & \leq\omega \bigl( g^{\ast};K_{l,p,q} \bigl( \vert \sqrt{\cdot}-\sqrt {z} \vert ;z \bigr) \bigr) \sum_{k=0}^{\infty} \biggl( 1+\frac { \vert \sqrt{\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}}-\sqrt{z} \vert }{K_{l,p,q} ( \vert \sqrt{\cdot}-\sqrt{z} \vert ;z ) } \biggr) s_{l,k} ( p,q;z ) \\ & =2\omega \bigl( g^{\ast};K_{l,p,q} \bigl( \vert \sqrt{ \cdot}-\sqrt {z} \vert ;z \bigr) \bigr) . \end{aligned}$$

To complete the proof, we need to show that for all \(t>0\) and \(z>0\), we have

$$M_{l,q} \bigl( \vert \sqrt{\cdot}-\sqrt{z} \vert ;z \bigr) \leq \sqrt{\frac{1}{p^{-(l-1)} [ l ] }}. $$

Indeed, from the Cauchy–Schwarz inequality it follows that

$$\begin{aligned} & K_{l,p,q} \bigl( \vert \sqrt{\cdot}-\sqrt{z} \vert ;z \bigr) \\ &\quad =\sum_{k=0}^{\infty} \biggl\vert \sqrt{ \frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}}-\sqrt{z} \biggr\vert s_{l,k} ( p,q;z ) \\ & \quad=\sum_{k=0}^{\infty}\frac{ \vert \frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}-z \vert }{\sqrt{\frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}}+\sqrt {z}}s_{l,k} ( p,q;z ) \leq\frac{1}{\sqrt{z}}\sum_{k=0}^{\infty} \biggl\vert \frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}-z \biggr\vert s_{l,k} ( p,q;z ) \\ & \quad\leq\frac{1}{\sqrt{z}}\sqrt{\sum_{k=0}^{\infty} \biggl\vert \frac{ [ k ] _{p,q}}{p^{-(l-k)} [ l ] _{p,q}}-z \biggr\vert ^{2}s_{l,k} ( q;z ) }=\frac{1}{\sqrt{z}}\sqrt{K_{l,p,q} \bigl( ( \cdot-z ) ^{2};z \bigr) } \\ &\quad =\frac{1}{\sqrt{z}}\sqrt{\frac{1}{p^{-(l-1)} [ l ] _{p,q}}z}=\sqrt{ \frac{1}{p^{-(l-1)} [ l ] _{p,q}}}. \end{aligned}$$

 □

Our next results is a Voronovskaya-type theorem for \(( p,q ) \)-Szász–Mirakjan operators.

Theorem 19

Let\(0< q< p\leq1\). For any\(g\in C_{\beta}^{2} [ 0,\infty ) \), we have the equality

$$\lim_{l\rightarrow\infty} [ l ] _{q_{l}} \bigl( K_{l,p,q} ( g;z ) -g ( z ) \bigr) =\frac{z}{2} g^{\prime\prime} ( z ) $$

for every\(z\in [ 0,\infty ) \).

Proof

Let \(z\in [ 0,\infty ) \) be fixed. By the Taylor formula we may write

$$ g ( t ) =g ( z ) +g^{\prime} ( z ) ( t-z ) +\frac{1}{2}g^{\prime\prime} ( z ) ( t-z ) ^{2}+r ( t;z ) ( t-z ) ^{2}, $$
(19)

where \(r ( t;z ) \) is the Peano form of the remainder, \(r ( \cdot;z ) \in C_{\beta}\), and \(\lim_{t\rightarrow z}r ( t;z ) =0\). Applying \(K_{l,p,q}\) to (19), we obtain

$$\begin{aligned} [ l ] _{p_{,}q} \bigl( K_{l,p_{,}q} ( g;z ) -g ( z ) \bigr) &=g^{\prime} ( z ) [ l ] _{p_{,},q}K_{l,p,q} ( t-z;z ) \\ &\quad+\frac{1}{2}g^{\prime\prime} ( z ) [ l ] _{p_{,},q}K_{l,p,q} \bigl( ( t-z ) ^{2};z \bigr) + [ l ] _{p_{,},q}K_{l,p,q} \bigl( r ( t;z ) ( t-z ) ^{2};z \bigr) .\end{aligned} $$

Applying the Cauchy–Schwarz inequality, we have

$$ K_{l,p,q} \bigl( r ( t;z ) ( t-z ) ^{2};z \bigr) \leq \sqrt{K_{l,p,q} \bigl( r^{2} ( t;z ) ;z \bigr) }\sqrt{K_{l,p,q} \bigl( ( t-z ) ^{4};z \bigr) }. $$
(20)

Obviously, \(r^{2} ( z;z ) =0\). Then it follows from Corollary 17 that

$$ \lim_{l\rightarrow\infty}K_{l,p,q} \bigl( r^{2} ( t;z ) ;z \bigr) =r^{2} ( z;z ) =0. $$
(21)

Now from (20), (21), and Lemma 5 we immediately get

$$\lim_{l\rightarrow\infty} [ l ] _{p,q}K_{l,p,q} \bigl( r ( t;z ) ( t-z ) ^{2};z \bigr) =0. $$

The proof is completed. □