1 Introduction

The Schrödingerean Hardy spaces \(H^{p}(\mathbb{C_{+}})\) (\(1 < p < \infty \)) are defined to consist of those functions f, Schrödingerean holomorphic in the upper half-plane \(\mathbb{C}_{+} =\{ z=x+iy:y>0\}\) with the property that \(M_{p}(f,y)\) is uniformly bounded for \(y > 0\), where

$$M_{p}(f,y)= \biggl( \int_{-\infty}^{+\infty} \bigl\vert f(x+iy) \bigr\vert ^{p}\,dx \biggr)^{\frac{1}{p}}. $$

Since \(|f|^{p}\) is Schrödingerean subharmonic for \(f \in H^{p}(\mathbb {C_{+}})\) with respect to \(\mathit{Sch}_{a}\), the function \(M_{p}(f,y)\) decreases in \((0,\infty)\),

$$\Vert f \Vert _{H^{p}(\mathbb{C_{+}})}=\sup\bigl\{ M_{p}(f,y):0< y< \infty\bigr\} =\lim_{y\to0}M_{p}(f,y). $$

If \(f(x)\) is the non-tangential boundary limits of the Schrödingerean function \(f \in H^{p}(\mathbb{C_{+}})\), then \(f(x) \in L^{p}(\mathbb{R})\) and

$$\Vert f \Vert _{p}= \biggl( \int_{-\infty}^{+\infty} \bigl\vert f(x) \bigr\vert ^{p}\,dx \biggr)^{\frac{1}{p}}= \Vert f \Vert _{H^{p}(\mathbb{C_{+}})}. $$

A function \(\phi(t)\) defined on \(\mathbb{R}\) belongs to the space \(\mathcal{D}_{L^{p}}\), \(1 < p < \infty\), iff

  1. (1)

    \(\phi(t)\in\mathcal{C}^{\infty}\);

  2. (2)

    \(\phi^{(k)}(t)\in L^{p}\) for all \(k\in\mathbb{N}\), where \(\mathbb {N}\) is the set of nonnegative integers.

The space \(\mathcal{D}\) consists of infinitely differentiable complex-valued functions defined on \(\mathbb{R}\). In the sequel, for \(1 < p < \infty\), we will write

$$p'=\frac{p}{p-1} $$

and denote by \(\mathcal{D}'_{L^{p}}\) the dual of the space \(\mathcal{D}_{L^{p^{\prime}}}\), that is, \(\mathcal{D}\prime_{L^{p}}=(\mathcal{D}_{L^{p^{\prime}}})^{\prime}\). We also denote by \(D^{\prime}\) the dual of the space D. So we can get \(D\subseteq\mathcal{D}_{L^{p}}\) and \(\mathcal{D}'_{L^{p}}\subseteq D^{\prime}\).

Definition 1.1

(see [2])

Let \(f \in\mathcal{D}^{\prime}\). An analytic representation of f is any function \(F(z)\) defined and analytic on the complement of the support of f such that for all test functions \(\phi\in\mathcal{D}\),

$$\lim_{y\to0^{+}} \int_{-\infty}^{+\infty} \bigl[F(x+iy)-F(x-iy) \bigr]\phi(x)\,dx= \bigl\langle f(x),\phi(x) \bigr\rangle . $$

Definition 1.2

Let \(f \in\mathcal{D}'_{L^{p}}\) (\(1 < p <\infty\)) and assume that Df is the operator of distributional differentiation defined on \(\mathcal {D}'_{L^{p}}\) by

$$\langle Df,\phi \rangle= \langle f,-D\phi \rangle $$

for all \(\phi\in\mathcal{D}_{L^{p^{\prime}}}\).

Then

$$Df\in\mathcal{D}^{\prime}_{L^{p}}. $$

Since \(f\in\mathcal{D}^{\prime}_{L^{p}}\),\(D\varphi\in D_{L^{p^{\prime }}}\), Df defined as above is a functional on \(D_{L^{p^{\prime}}}\). Linearity of Df is trivial. Assume that \(\{\varphi_{v}\}\to\varphi\) in \(D_{L^{p^{\prime}}}\). Then

$$\langle Df,\varphi_{v} \rangle= \langle f,-D\varphi _{v} \rangle\to \langle f,-D\varphi \rangle= \langle Df,\varphi \rangle. $$

2 Main results

In 2016, Jiang (see [1]) proved Schrödinger type inequalities for stabilization of discrete linear systems associated with the stationary Schrödinger operator. As applications, Jiang and Uso (see [3]) obtained boundary behaviors for linear systems of subsolutions of the stationary Schrödinger equation. Almost at the same time, Huang (see [4]) considered a new type of minimal thinness with respect to the stationary Schrödinger operator. As an application, Huang and Ychussie (see [5]) solved the Dirichlet-Sch problems on smooth cones with slow-growth continuous data. Recently, Lü and Ülker (see [6]) gave the existence of weak solutions for two-point boundary value problems of the Schrödingerean predator-prey system. Motivated by their results, by using Schrödinger type inequalities proved by Jiang (see [1]), we obtain the integral representation of Schrödingerean harmonic functions in the Schrödingerean Hardy space.

Theorem 2.1

Suppose that \(1< p<\infty\) and \(f\in\mathcal{D}^{\prime}_{L^{p}}\). Then

$$F(Z)=\frac{1}{2\pi i}\biggl\langle f(t),\frac{1}{t-z}\biggr\rangle $$

is one of the analytic representations of f, which satisfies

$$\sup_{-\infty< x< \infty,y\ge\delta>0}\big\| F(x+iy)\big\| =A_{\delta}< \infty $$

and

$$\sup_{-\infty< x< \infty}\big\| F(x+iy)\big\| =O\bigl(y^{-\frac{1}{p}}\bigr), $$

where \(y\to\infty\).

There exist functions \(F_{k}(z)\in H^{p}(\mathbb{C}_{+})\), so that

$$F(z)=\sum_{k=1}^{r}\frac{\partial^{k-1}}{\partial z^{k-1}}F_{k}(z) $$

and

$$F^{(j)}(z)=\sum_{k=1}^{r} \frac{\partial^{k+j-1}}{\partial z^{k+j-1}}F_{k}(z), $$

where r and j are nonnegative integers.

Theorem 2.2

If \(1< p<\infty\), \(F_{k}\in H^{p}(\mathbb{C}_{+})\) and

$$F(z)=\sum_{k=1}^{r}\frac{\partial^{k-1}}{\partial z^{k-1}}F_{k}(z), $$

then there exists a distributional function \(f(x)\in\mathcal{D}^{\prime}_{L^{p}}\) such that \(F(z)\) is one of analytic representations of \(f(x)\).

Corollary 2.3

If \(1< p<\infty\) and \(f(x)\in\mathcal {D}^{\prime}_{L^{p}}\), then

$$F(Z)=\frac{1}{2\pi i}\biggl\langle f(t),\frac{1}{t-z}\biggr\rangle $$

satisfies

$$\sup_{-\infty< x< \infty,y\ge\delta>0}\big\| F(x+iy)\big\| =A_{\delta}< \infty $$

and

$$\sup_{-\infty< x< \infty}\big\| F(x+iy)\big\| =O\bigl(y^{-\frac{1}{p}}\bigr), $$

where \(y\to\infty\).

There exist functions \(F_{k}(z)\) in \(H^{p}(\mathbb{C}_{+})\) so that

$$F(z)=\sum_{k=1}^{r}\frac{\partial^{k+j-1}}{\partial z^{k+j-1}}F_{k}(z), $$

where \(j>1\), r, j are nonnegative integers.

3 Lemmas

In this section we need the following lemmas.

Lemma 3.1

(see [7, 8])

If \(1< p<\infty\), \(u(t)\in L^{p}(\mathbb{R})\) and the function \(G(u)(t)\) is defined as follows

$$G(u) (t)=\frac{1}{2\pi i} \int_{-\infty}^{\infty}\frac{u(t)}{t-z}\,dt, $$

then

$$G(u) (t)\in H^{p}(\mathbb{C}_{+}). $$

Lemma 3.2

(see [1])

Let \(F(z)\) be an analytic complex-valued function of the complex variable \(z = x + iy\) in the open upper half-plane satisfying

  1. (1)

    for fixed \(y>0\), \(p\prime=\frac{p}{p+1}\), \(1< p<\infty\), \(F(x+iy)\in L^{p}\);

  2. (2)
    $$\lim_{y\to0^{+}}F(x+iy)=f^{+}(x) $$

    in \(\mathcal{D}^{\prime}_{L^{p}}\) (weakly)

    $$\sup_{-\infty< x< \infty}\big\| F(x+iy)\big\| \to O, $$

    where \(y\to\infty\) and

    $$\sup_{-\infty< x< \infty,y\ge\delta>0}\big\| F(x+iy)\big\| =A_{\delta}< \infty. $$

Then

$$F(z)=\frac{1}{2\pi i}\biggl\langle f^{+}(t),\frac{1}{t-z}\biggr\rangle , $$

where \(\operatorname{Im}z>0\).

4 Proofs of the main results

4.1 Proof of Theorem 2.1

In view of the structure formula in [3], for \(f\in\mathcal{D}^{\prime}_{L^{p}}\),

$$F(z)=\frac{1}{2\pi i}\biggl\langle f^{+}(t),\frac{1}{t-z}\biggr\rangle , $$

there exists a nonnegative integer r and \(f_{k}\in L_{p}\) such that

$$\begin{aligned} F(z)&=\frac{1}{2\pi i}\sum_{k=1}^{r} \int_{\mathbb{R}} f_{k}(t) \biggl(-\frac {\partial}{\partial t} \biggr)^{(k-1)}\biggl(\frac{1}{t-z}\biggr)\,dt \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \int_{\mathbb{R}} f_{k}(t) (-1)^{k-1} \frac{(k-1)!}{(t-z)^{k}}\,dt.\end{aligned} $$

So

$$\big|F(x+iy)\big|\le\frac{1}{2\pi}\sum_{k=1}^{r} \int_{\mathbb{R}} \big|f_{k}(t)\big|\frac{(k-1)!}{|t-z|^{k}}\,dt. $$

By using Holder’s inequality, we have

$$\big|F(x+iy)\big|\le\frac{1}{2\pi}\sum_{k=1}^{r}(k-1)! \biggl( \int_{\mathbb{R}} \big|f_{k}(t)\big|^{p} \,dt \biggr)^{\frac{1}{p}} \biggl( \int_{R} \frac {1}{|t-z|^{kp^{\prime}}}\,dt \biggr)^{\frac{1}{p^{\prime}}}. $$

Define

$$I= \int_{R} \frac{1}{|t-z|^{kp^{\prime}}}\,dt. $$

So

$$\begin{aligned} I&= \int_{\mathbb{R}} \frac{1}{[(t-x)^{2}+y^{2}]^{\frac{kp^{\prime}}{2}}}\,dt \\ &= \int_{\mathbb{R}} \frac{1}{y^{kp\prime}[(\frac{t}{y})^{2}+1]^{\frac {kp^{\prime}}{2}}}\,dt \\ &=\frac{1}{y^{kp\prime-1}} \int_{\mathbb{R}}\frac{1}{(1+t^{2})^{\frac {kp^{\prime}}{y}}}\,dt.\end{aligned} $$

Further, \(k>1\) and \(p^{\prime}>1\) imply that \(kp\prime> 1\) for \(y \ge \delta> 0\), there exists a constant C satisfying

$$I\le\frac{C}{\delta^{kp\prime-1}}< \infty. $$

Since \(f_{k} \in L^{p}\), there exists a constant M such that

$$\sup_{-\infty< x< \infty,y\ge\delta>0}\big\| F(x+iy)\big\| =A_{\delta}< \infty, $$

where

$$\begin{gathered} A_{\delta}=\frac{1}{2\pi}\sum_{k=1}^{r}(k-1)! \frac{MC^{\frac {1}{p^{\prime}}}}{\frac{k\prime-1}{\delta p\prime}}, \\\big|y^{\frac{1}{p}}F(x+yi)\big|\le\sum_{k=1}^{r}(k-1)! \|f_{k}\|_{L}^{p}\frac {1}{y^{kp\prime-1-\frac{1}{p}}} \int_{\mathbb{R}}\frac {1}{(1+t^{2})^{\frac{kp^{\prime}}{y}}}\,dt\end{gathered} $$

and

$$kp\prime-1-\frac{1}{p}=p^{2}(1-k)-1< 0. $$

So

$$\lim_{y\to\infty}\sup_{-\infty< x< \infty}\big|F(x+yi)\big|=O \bigl(y^{-\frac{1}{p}}\bigr). $$

In view of the structure formula (see [9])

$$\begin{aligned} F(z)&=\frac{1}{2\pi i}\sum_{k=1}^{r} \int_{\mathbb{R}} f_{k}(t) \biggl(-\frac {\partial}{\partial t} \biggr)^{(k-1)}\biggl(\frac{1}{t-z}\biggr)\,dt \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \int_{\mathbb{R}} f_{k}(t) \biggl(\frac {\partial}{\partial z} \biggr)^{(k-1)}\biggl(\frac{1}{t-z}\biggr)\,dt \\ &=\sum_{k=1}^{r}\biggl(\frac{\partial}{\partial z} \biggr)^{(k-1)}\frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f_{k}(t)}{t-z}\,dt \\ &=\sum_{k=1}^{r}\biggl(\frac{\partial}{\partial z} \biggr)^{(k-1)}F_{k}(z),\end{aligned} $$

where

$$F_{k}(z)=\frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f_{k}(t)}{t-z}\,dt. $$

According to Lemma 3.1, we know that \(F_{k}(z)\in H^{p}(C_{+})\), which gives that

$$F^{(j)}(z)=\sum_{k=1}^{r}\biggl( \frac{\partial}{\partial z}\biggr)^{(k+j-1)}F_{k}(z), $$

where j is a nonnegative integer.

4.2 Proof of Theorem 2.2

Since \(F_{k}(z)\in H^{p}(C_{+})\), there exist functions \(f_{k}(t)\in L^{p}\), where \(f_{k}\) is the non-tangential limit of \(F(z)\), where \(F_{k}(x+iy)\in L^{p}\) for fixed y.

Since \(D_{L^{p^{\prime}}}\in L^{p^{\prime}}\), we see that \(f_{k}(t)\in D^{\prime}_{L^{p}}\). By using the property of a subharmonic function, we get

$$\begin{aligned} \big|F_{k}(x+iy)\big|^{p}&\leq\frac{1}{\pi y^{2}} \int_{D(x+iy,y)}\big|F_{k}(\xi+i\eta )\big|^{p}\,d\lambda \\ &\leq\frac{1}{\pi y^{2}} \int_{x-y}^{x+y} \int_{0}^{2y}\big|F_{k}(\xi+i\eta )\big|^{p}\,d\eta \,d\zeta \\ &\leq\frac{2}{\pi y}\|F_{k}\|_{H^{p}}^{p}.\end{aligned} $$

So

$$\big|F_{k}(x+iy)\big|\le\biggl(\frac{2}{\pi y}\|F_{k} \|_{H^{p}}^{p}\biggr)^{\frac {1}{p}}=y^{\frac{1}{p}} \biggl(\frac{2}{\pi}\|F_{k}\|_{H^{p}}^{p} \biggr)^{\frac{1}{p}}, $$

which gives that

$$F_{k}(x+iy)=O\biggl(\frac{1}{y\frac{1}{p}}\biggr), $$

where \(y>0\) and

$$\sup_{-\infty< x< \infty,y\ge\delta>0}\big\| F(x+iy)\big\| \le\frac{2}{\pi \delta}\|F_{k} \|_{H^{p}}^{p}=A_{\delta}< \infty. $$

According to Lemma 3.2, we know that \(F_{k}(z)\) can be written as

$$F_{k}(x)=\frac{1}{2\pi i}\biggl\langle f_{k}(t),\frac{1}{t-z}\biggr\rangle . $$

So

$$\begin{aligned} F(z)&=\sum_{k=1}^{r}\biggl( \frac{\partial}{\partial z}\biggr)^{k-1}F_{k}(z) \\ &=\sum_{k=1}^{r}\biggl(\frac{\partial}{\partial z} \biggr)^{k-1}\frac{1}{2\pi i} \biggl\langle f_{k}(t), \frac{1}{t-z} \biggr\rangle \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \biggl\langle f_{k}(t),\biggl(\frac {\partial}{\partial z}\biggr)^{k-1} \frac{1}{t-z} \biggr\rangle \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \biggl\langle D^{(k-1)}f_{k}(t),\frac {1}{t-z} \biggr\rangle \\ &=\frac{1}{2\pi i} \Biggl\langle \sum_{k=1}^{r} D^{(k-1)}f_{k}(t),\frac{1}{t-z} \Biggr\rangle ,\end{aligned} $$

which gives that

$$\begin{aligned} F(z)&=\sum_{k=1}^{r}\biggl( \frac{\partial}{\partial z}\biggr)^{k-1}F_{k}(z) \\ &=\sum_{k=1}^{r}\biggl(\frac{\partial}{\partial z} \biggr)^{k-1}\frac{1}{2\pi i} \biggl\langle f_{k}(t), \frac{1}{t-z} \biggr\rangle \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \biggl\langle f_{k}(t),\biggl(\frac {\partial}{\partial z}\biggr)^{k-1} \frac{1}{t-z} \biggr\rangle \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \biggl\langle D^{(k-1)}f_{k}(t),\frac {1}{t-z} \biggr\rangle \\ &=\frac{1}{2\pi i} \Biggl\langle \sum_{k=1}^{r} D^{(k-1)}f_{k}(t),\frac {1}{t-z} \Biggr\rangle .\end{aligned} $$

Let

$$f(x)=\sum_{k=1}^{r} D^{(k-1)}f_{k}(t), $$

where \(f(x)\in D^{\prime}_{L^{p}}\), which implies that \(F(z)\) is one of the analytic representations of \(f(x)\).

4.3 Proof of Corollary 2.3

In view of the structure formula (see [9])

$$\begin{aligned} F(z)&=\frac{1}{2\pi i} \biggl\langle f(t),\frac{1}{(t-z)^{j}} \biggr\rangle \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \int_{\mathbb{R}} f_{k}(t) \biggl(-\frac {\partial}{\partial t} \biggr)^{(k-1)}\biggl(\frac{1}{(t-z)^{j}}\biggr)\,dt \\ &=\frac{1}{2\pi i}\sum_{k=1}^{r} \int_{\mathbb{R}} f_{k}(t)\frac {(k+j-2)!}{(j-1)!(t-z)^{k+j-1}}\,dt.\end{aligned} $$

Similar to the proof of Theorem 2.1, we can see the corollary holds.

5 Conclusions

In this paper, we not only obtained the representation of Schrödingerean harmonic functions but also gave a sufficient and necessary condition between the Schrödingerean distributional function and its derivative in the Schrödingerean Hardy space.