1 Introduction

For given α, \(0<\alpha<n\), the fractional integral operator (or the Riesz potential) \(I_{\alpha}\) of order α is defined by

$$ I_{\alpha}f(x):=\frac{1}{\gamma(\alpha)} \int_{\mathbb {R}^{n}}\frac {f(y)}{|x-y|^{n-\alpha}}\,dy, \quad\mbox{and} \quad\gamma(\alpha)= \frac{\pi^{\frac{n}{ 2 }}2^{\alpha}\Gamma(\frac{\alpha}{ 2 })}{\Gamma(\frac{n-\alpha}{2})}. $$

It is well known that the Hardy-Littlewood-Sobolev theorem states that the fractional integral operator \(I_{\alpha}\) is bounded from \(L^{p}(\mathbb {R}^{n})\) to \(L^{q}(\mathbb {R}^{n})\) for \(0<\alpha<n\), \(1< p< n/{\alpha}\) and \(1/q=1/p-{\alpha}/n\). Also we know that \(I_{\alpha }\) is bounded from \(L^{1}(\mathbb {R}^{n})\) to \(WL^{q}(\mathbb {R}^{n})\) for \(0<\alpha<n\) and \(q=n/{(n-\alpha)}\) (see [1]). In 1974, Muckenhoupt and Wheeden [2] studied the weighted boundedness of \(I_{\alpha}\) and obtained the following results.

Theorem 1.1

[2]

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\), \(1/q=1/p-{\alpha}/n\) and \(w\in A_{p,q}\). Then the fractional integral operator \(I_{\alpha}\) is bounded from \(L^{p}(w^{p})\) to \(L^{q}(w^{q})\).

Theorem 1.2

[2]

Let \(0<\alpha<n\), \(p=1\), \(q=n/{(n-\alpha)}\) and \(w\in A_{1,q}\). Then the fractional integral operator \(I_{\alpha}\) is bounded from \(L^{1}(w)\) to \(WL^{q}(w^{q})\).

For \(0<\alpha<n\), the linear commutator \([b,I_{\alpha}]\) generated by a suitable function b and \(I_{\alpha}\) is defined by

$$ \begin{aligned}{} [b,I_{\alpha}]f(x)&:=b(x)\cdot I_{\alpha}f(x)-I_{\alpha}(bf) (x)\\ &=\frac{1}{\gamma(\alpha)} \int_{\mathbb {R}^{n}}\frac{[b(x)-b(y)]\cdot f(y)}{|x-y|^{n-\alpha}}\,dy. \end{aligned} $$

In 1991, Segovia and Torrea [3] proved that \([b,I_{\alpha}]\) is also bounded from \(L^{p}(w^{p})\) (\(1< p< n/{\alpha}\)) to \(L^{q}(w^{q})\) whenever \(b\in BMO(\mathbb {R}^{n})\) (see also [4] for the unweighted case).

Theorem 1.3

[3]

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\), \(1/q=1/p-{\alpha}/n\) and \(w\in A_{p,q}\). Suppose that \(b\in BMO(\mathbb {R}^{n})\), then the linear commutator \([b,I_{\alpha}]\) is bounded from \(L^{p}(w^{p})\) to \(L^{q}(w^{q})\).

In 2007, Cruz-Uribe and Fiorenza [5] discussed the weighted endpoint inequalities for commutator of fractional integral operator and proved the following result (see also [6] for the unweighted case).

Theorem 1.4

[5]

Let \(0<\alpha<n\), \(p=1\), \(q=n/{(n-\alpha)}\) and \(w^{q}\in A_{1}\). Suppose that \(b\in BMO(\mathbb {R}^{n})\), then, for any given \(\sigma>0\) and any bounded domain \(\Omega\subset\mathbb {R}^{n}\), there is a constant \(C>0\), which does not depend on f, Ω and \(\sigma>0\), such that

$$ \bigl[w^{q} \bigl( \bigl\{ x\in\Omega: \bigl|[b,I_{\alpha}](f) (x) \bigr|> \sigma \bigr\} \bigr) \bigr]^{1/q} \leq C \int_{\Omega}\Phi \biggl(\frac{|f(x)|}{\sigma} \biggr)\cdot w(x)\,dx, $$

where \(\Phi(t)=t\cdot(1+\log^{+}t)\) and \(\log^{+}t=\max\{\log t,0\}\).

On the other hand, the classical Morrey space was originally introduced by Morrey in [7] to study the local behavior of solutions to second order elliptic partial differential equations. This classical space and various generalizations on the Euclidean space \(\mathbb {R}^{n}\) have been extensively studied by many authors. In [8], Mizuhara introduced the generalized Morrey space \(\mathcal {L}^{p,\Theta }(\mathbb {R}^{n})\) which was later extended and studied in [9]. In [10], Komori and Shirai defined a version of the weighted Morrey space \(\mathcal {L}^{p,\kappa}(v,u)\) which is a natural generalization of the weighted Lebesgue space.

Let \(I_{\alpha}\) be the fractional integral operator, and let \([b,I_{\alpha}]\) be its linear commutator. The main purpose of this paper is twofold. We first define a new kind of Morrey-type spaces \(\mathcal {M}^{p,\theta}(v,u)\) containing generalized Morrey space \(\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) and weighted Morrey space \(\mathcal {L}^{p,\kappa}(v,u)\) as special cases. As the Morrey-type spaces may be considered as an extension of the weighted Lebesgue space, it is natural and important to study the weighted boundedness of \(I_{\alpha}\) and \([b,I_{\alpha}]\) in these new spaces. Then we will establish the weighted strong type and endpoint estimates for \(I_{\alpha }\) and \([b,I_{\alpha}]\) in these Morrey-type spaces \(\mathcal {M}^{p,\theta}(v,u)\) for all \(1\leq p<\infty\). In addition, we will discuss two-weight, weak type norm inequalities for \(I_{\alpha}\) and \([b,I_{\alpha}]\) in \(\mathcal {M}^{p,\theta}(v,u)\) and give some partial results.

2 Statements of the main results

2.1 Notations and preliminaries

Let \(\mathbb {R}^{n}\) be the n-dimensional Euclidean space of points \(x=(x_{1},x_{2},\dots,x_{n})\) with norm \(|x|=(\sum_{i=1}^{n} x_{i}^{2})^{1/2}\). For \(x_{0}\in\mathbb {R}^{n}\) and \(r>0\), let \(B(x_{0},r)=\{x\in\mathbb {R}^{n}:|x-x_{0}|< r\}\) denote the open ball centered at \(x_{0}\) of radius r, \(B(x_{0},r)^{c}\) denote its complement and \(|B(x_{0},r)|\) be the Lebesgue measure of the ball \(B(x_{0},r)\). A non-negative function w defined on \(\mathbb {R}^{n}\) is called a weight if it is locally integrable. We first recall the definitions of two weight classes; \(A_{p}\) and \(A_{p,q}\).

Definition 2.1

\(A_{p}\) weights [11]

A weight w is said to belong to the class \(A_{p}\) for \(1< p<\infty\), if there exists a positive constant C such that, for any ball B in \(\mathbb {R}^{n}\),

$$ \biggl(\frac{1}{|B|} \int_{B} w(x)\,dx \biggr)^{1/p} \biggl( \frac{1}{|B|} \int_{B} w(x)^{-p'/p}\,dx \biggr)^{1/{p'}}\leq C< \infty, $$

where \(p'\) is the dual of p such that \(1/p+1/{p'}=1\). The class \(A_{1}\) is defined replacing the above inequality by

$$ \frac{1}{|B|} \int_{B} w(x)\,dx\leq C\cdot\mathop{\operatorname{ess\,inf}}\limits_{x\in B} w(x), $$

for any ball B in \(\mathbb {R}^{n}\). We also define \(A_{\infty}=\bigcup_{1\leq p<\infty}A_{p}\).

Definition 2.2

\(A_{p,q}\) weights [2]

A weight w is said to belong to the class \(A_{p,q}\) \((1< p,q<\infty)\), if there exists a positive constant C such that, for any ball B in \(\mathbb {R}^{n}\),

$$ \biggl(\frac{1}{|B|} \int_{B} w(x)^{q} \,dx \biggr)^{1/q} \biggl( \frac{1}{|B|} \int_{B} w(x)^{-p'}\,dx \biggr)^{1/{p'}}\leq C< \infty. $$

The class \(A_{1,q}\) \((1< q<\infty)\) is defined replacing the above inequality by

$$ \biggl(\frac{1}{|B|} \int_{B} w(x)^{q} \,dx \biggr)^{1/q} \biggl( \mathop{\operatorname{ess\,inf}}\limits_{x\in B} \frac{1}{w(x)} \biggr)\leq C< \infty. $$

Lemma 2.1

Suppose that \(0<\alpha<n\), \(1\leq p< n/{\alpha}\) and \(1/q=1/p-{\alpha }/n\). The following statements are true (see [12]):

  1. (i)

    If \(p>1\), then \(w\in A_{p,q}\) implies \(w^{q}\in A_{q}\) and \(w^{-p'}\in A_{p'}\).

  2. (ii)

    If \(p=1\), then \(w\in A_{1,q}\) if and only if \(w^{q}\in A_{1}\).

Given a ball B and \(\lambda>0\), λB denotes the ball with the same center as B whose radius is λ times that of B. For a given weight function w and a Lebesgue measurable set E, we denote the characteristic function of E by \(\chi_{E}\), the Lebesgue measure of E by \(|E|\) and the weighted measure of E by \(w(E)\), where \(w(E):=\int_{E} w(x)\,dx\). Given a weight w, we say that w satisfies the doubling condition if there exists a universal constant \(C>0\) such that, for any ball B in \(\mathbb {R}^{n}\), we have

$$ w(2B)\leq C\cdot w(B). $$
(2.1)

When w satisfies this doubling condition (2.1), we denote \(w\in\Delta_{2}\) for brevity. We know that if w is in \(A_{\infty}\), then \(w\in\Delta_{2}\) (see [13]). Moreover, if \(w\in A_{\infty}\), then, for any ball B and any measurable subset E of B, there exists a number \(\delta>0\) independent of E and B such that (see [13])

$$ \frac{w(E)}{w(B)}\le C \biggl(\frac{|E|}{|B|} \biggr)^{\delta}. $$
(2.2)

Given a weight function w on \(\mathbb {R}^{n}\), for \(1\leq p<\infty\), the weighted Lebesgue space \(L^{p}(w)\) is defined as the set of all functions f such that

$$ \|f \|_{L^{p}(w)}:= \biggl( \int_{\mathbb {R}^{n}}\bigl|f(x)\bigr|^{p}w(x)\,dx \biggr)^{1/p}< \infty. $$

We also denote by \(WL^{p}(w)\) (\(1\leq p<\infty\)) the weighted weak Lebesgue space consisting of all measurable functions f such that

$$ \|f \|_{WL^{p}(w)}:= \sup_{\lambda>0}\lambda\cdot \bigl[w \bigl( \bigl\{ x\in\mathbb {R}^{n}:\bigl|f(x)\bigr|>\lambda \bigr\} \bigr) \bigr]^{1/p}< \infty. $$

We next recall some definitions and basic facts about Orlicz spaces needed for the proofs of the main results. For further information on this subject, we refer to [14]. A function \(\mathcal {A}:[0,+\infty )\rightarrow[0,+\infty)\) is said to be a Young function if it is continuous, convex and strictly increasing satisfying \(\mathcal {A}(0)=0\) and \(\mathcal {A}(t)\to+\infty\) as \(t\to+\infty\). An important example of Young function is \(\mathcal {A}(t)=t^{p}(1+\log^{+}t)^{p}\) with some \(1\leq p<\infty\). Given a Young function \(\mathcal {A}\), we define the \(\mathcal {A}\)-average of a function f over a ball B by means of the Luxemburg norm:

$$ \|f \|_{\mathcal {A},B} :=\inf \biggl\{ \lambda>0:\frac{1}{|B|} \int_{B}\mathcal {A} \biggl(\frac {|f(x)|}{\lambda} \biggr)\,dx\leq1 \biggr\} . $$

In particular, when \(\mathcal {A}(t)=t^{p}\), \(1\leq p<\infty\), it is easy to see that \(\mathcal {A}\) is a Young function and

$$ \|f \|_{\mathcal {A},B}= \biggl(\frac{1}{|B|} \int_{B}\bigl|f(x)\bigr|^{p} \,dx \biggr)^{1/p}; $$

that is, the Luxemburg norm coincides with the normalized \(L^{p}\) norm. Recall that the following generalization of Hölder’s inequality holds:

$$ \frac{1}{|B|} \int_{B} \bigl|f(x)\cdot g(x) \bigr|\,dx\leq2 \|f \| _{\mathcal {A},B} \|g \|_{\bar{\mathcal {A}},B}, $$

where \(\bar{\mathcal {A}}\) is the complementary Young function associated to \(\mathcal {A}\), which is given by \(\bar{\mathcal {A}}(s):=\sup_{0\leq t<\infty}[st-\mathcal {A}(t)]\), \(0\leq s<\infty\). Obviously, \(\Phi (t)=t\cdot(1+\log^{+}t)\) is a Young function and its complementary Young function is \(\bar{\Phi}(t)\approx e^{t}-1\). In the present situation, we denote \(\|f\|_{\Phi,B}\) and \(\|g\|_{\bar{\Phi},B}\) by \(\|f\|_{L\log L,B}\) and \(\|g\|_{\exp L,B}\), respectively. So we have

$$ \frac{1}{|B|} \int_{B} \bigl|f(x)\cdot g(x) \bigr|\,dx\leq2 \|f \| _{L\log L,B} \|g \|_{\exp L,B}. $$
(2.3)

There is a further generalization of Hölder’s inequality that turns out to be useful for our purpose (see [15]): Let \(\mathcal {A}\), \(\mathcal {B}\), and \(\mathcal {C}\) be Young functions such that, for all \(t>0\),

$$ \mathcal {A}^{-1}(t)\cdot\mathcal {B}^{-1}(t)\leq\mathcal {C}^{-1}(t), $$

where \(\mathcal {A}^{-1}(t)\) is the inverse function of \(\mathcal {A}(t)\). Then, for all functions f and g and all balls \(B\subset\mathbb {R}^{n}\),

$$ \|f\cdot g \|_{\mathcal {C},B}\leq2 \|f \|_{\mathcal {A},B} \|g \|_{\mathcal {B},B}. $$
(2.4)

Let us now recall the definition of the space of \(BMO(\mathbb {R}^{n})\) (see [16]). \(BMO(\mathbb {R}^{n})\) is the Banach function space modulo constants with the norm \(\|\cdot\|_{*}\) defined by

$$ \|b\|_{*}:=\sup_{B}\frac{1}{|B|} \int_{B}\bigl|b(x)-b_{B}\bigr|\,dx< \infty, $$

where the supremum is taken over all balls B in \(\mathbb {R}^{n}\) and \(b_{B}\) stands for the mean value of b over B; that is,

$$ b_{B}:=\frac{1}{|B|} \int_{B} b(y)\,dy. $$

2.2 Morrey-type spaces

Let us begin with the definitions of the weighted Morrey space with two weights and generalized Morrey space.

Definition 2.3

[10]

Let \(1\leq p<\infty\) and \(0<\kappa<1\). For two weights u and v on \(\mathbb {R}^{n}\), the weighted Morrey space \(\mathcal {L}^{p,\kappa}(v,u)\) is defined by

$$ \mathcal {L}^{p,\kappa}(v,u):= \bigl\{ f\in L^{p}_{\mathrm{loc}}(v): \|f \| _{\mathcal {L}^{p,\kappa}(v,u)}< \infty \bigr\} , $$

where

$$ \|f \|_{\mathcal {L}^{p,\kappa}(v,u)}:=\sup_{B} \biggl( \frac {1}{u(B)^{\kappa}} \int_{B}\bigl|f(x)\bigr|^{p}v(x)\,dx \biggr)^{1/p} $$
(2.5)

and the supremum is taken over all balls B in \(\mathbb {R}^{n}\). If \(v=u\), then we denote \(\mathcal {L}^{p,\kappa}(v)\), for short.

Definition 2.4

Let \(1\leq p<\infty\), \(0<\kappa<1\) and w be a weight on \(\mathbb {R}^{n}\). We denote by \(W\mathcal {L}^{p,\kappa}(w)\) the weighted weak Morrey space of all measurable functions f for which

$$ \|f \|_{W\mathcal {L}^{p,\kappa}(w)}:=\sup_{B}\sup _{\sigma>0}\frac {1}{w(B)^{{\kappa}/p}}\sigma \cdot \bigl[w \bigl( \bigl\{ x\in B:\bigl|f(x)\bigr|>\sigma \bigr\} \bigr) \bigr]^{1/p}< \infty. $$
(2.6)

Let \(\Theta=\Theta(r)\), \(r>0\), be a growth function; that is, a positive increasing function on \((0,+\infty)\) and satisfy the following doubling condition:

$$ \Theta(2r)\leq D\cdot\Theta(r), \quad\mbox{for all } r>0, $$
(2.7)

where \(D=D(\Theta)\ge1\) is a doubling constant independent of r.

Definition 2.5

[8]

Let \(1\leq p<\infty\) and Θ be a growth function on \((0,+\infty )\). Then the generalized Morrey space \(\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) is defined by

$$ \mathcal {L}^{p,\Theta}\bigl(\mathbb {R}^{n}\bigr):= \bigl\{ f\in L^{p}_{\mathrm{loc}}\bigl(\mathbb {R}^{n}\bigr): \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})}< \infty \bigr\} , $$

where

$$ \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})} := \sup_{r>0;B(x_{0},r)} \biggl(\frac{1}{\Theta(r)} \int_{B(x_{0},r)}\bigl|f(x)\bigr|^{p} \,dx \biggr)^{1/p} $$

and the supremum is taken over all balls \(B(x_{0},r)\) in \(\mathbb {R}^{n}\) with \(x_{0}\in\mathbb {R}^{n}\).

Definition 2.6

Let \(1\leq p<\infty\) and Θ be a growth function on \((0,+\infty )\). We denote by \(W\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) the generalized weak Morrey space of all measurable functions f for which

$$ \|f \|_{W\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})}:=\sup_{B(x_{0},r)}\sup_{\lambda>0} \frac{1}{\Theta(r)^{1/p}}\lambda\cdot \bigl| \bigl\{ x\in B(x_{0},r):\bigl|f(x)\bigr|>\lambda \bigr\} \bigr|^{1/p}< \infty. $$

In order to unify the definitions given above, we now introduce Morrey-type spaces associated to θ as follows. Let \(0\leq\kappa<1\). Assume that \(\theta(\cdot)\) is a positive increasing function defined in \((0,+\infty)\) and satisfies the following \(\mathcal {D}_{\kappa}\) condition:

$$ \frac{\theta(\xi)}{\xi^{\kappa}}\leq C\cdot\frac{\theta(\xi')}{(\xi ')^{\kappa}},\quad \mbox{for any } 0< \xi'< \xi< +\infty, $$
(2.8)

where \(C>0\) is a constant independent of ξ and \(\xi'\).

Definition 2.7

Let \(1\leq p<\infty\), \(0\leq\kappa<1\) and θ satisfy the \(\mathcal {D}_{\kappa}\) condition (2.8). For two weights u and v on \(\mathbb {R}^{n}\), we denote by \(\mathcal {M}^{p,\theta}(v,u)\) the generalized weighted Morrey space, the space of all locally integrable functions f with finite norm.

$$ \mathcal {M}^{p,\theta}(v,u):= \bigl\{ f\in L^{p}_{\mathrm{loc}}(v): \|f \| _{\mathcal {M}^{p,\theta}(v,u)}< \infty \bigr\} , $$

where the norm is given by

$$ \|f \|_{\mathcal {M}^{p,\theta}(v,u)} :=\sup_{B} \biggl(\frac{1}{\theta(u(B))} \int_{B} \bigl|f(x)\bigr|^{p}v(x)\,dx \biggr)^{1/p}. $$

Here the supremum is taken over all balls B in \(\mathbb {R}^{n}\). If \(v=u\), then we denote \(\mathcal {M}^{p,\theta}(v)\), for short. Furthermore, we denote by \(W\mathcal {M}^{p,\theta}(v)\) the generalized weighted weak Morrey space of all measurable functions f for which

$$ \|f \|_{W\mathcal {M}^{p,\theta}(v)}:=\sup_{B}\sup_{\sigma>0} \frac {1}{\theta(v(B))^{1/p}}\sigma \cdot \bigl[v \bigl( \bigl\{ x\in B:\bigl|f(x)\bigr|>\sigma \bigr\} \bigr) \bigr]^{1/p}< \infty. $$

According to this definition, we recover the spaces \(\mathcal {L}^{p,\kappa}(v,u)\) and \(W\mathcal {L}^{p,\kappa}(v)\) under the choice of \(\theta(x)=x^{\kappa}\) with \(0<\kappa<1\):

$$ \mathcal {L}^{p,\kappa}(v,u)=\mathcal {M}^{p,\theta}(v,u) |_{\theta (x)=x^{\kappa}},\qquad W\mathcal {L}^{p,\kappa}(v)= W\mathcal {M}^{p,\theta}(v) |_{\theta (x)=x^{\kappa}}. $$

Also, note that if \(\theta(x)\equiv1\), then \(\mathcal {M}^{p,\theta }(v)=L^{p}(v)\) and \(W\mathcal {M}^{p,\theta}(v)=WL^{p}(v)\), the classical weighted Lebesgue and weak Lebesgue spaces.

The aim of this paper is to extend Theorems 1.1-1.4 to the corresponding Morrey-type spaces. Our main results on the boundedness of \(I_{\alpha}\) in the Morrey-type spaces associated to θ can be formulated as follows.

Theorem 2.1

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\), \(1/q=1/p-{\alpha}/n\) and \(w\in A_{p,q}\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa< p/q\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {M}^{p,\theta}(w^{p},w^{q})\) into \(\mathcal {M}^{q,\theta^{q/p}}(w^{q})\).

Theorem 2.2

Let \(0<\alpha<n\), \(p=1\), \(q=n/{(n-\alpha)}\) and \(w\in A_{1,q}\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1/q\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {M}^{1,\theta}(w,w^{q})\) into \(W\mathcal {M}^{q,\theta^{q}}(w^{q})\).

Let \([b,I_{\alpha}]\) be the commutator formed by \(I_{\alpha}\) and BMO function b. For the strong type estimate of the linear commutator \([b,I_{\alpha}]\) in the Morrey-type spaces associated to θ, we will prove

Theorem 2.3

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\), \(1/q=1/p-{\alpha}/n\) and \(w\in A_{p,q}\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa< p/q\) and \(b\in BMO(\mathbb {R}^{n})\), then the commutator operator \([b,I_{\alpha}]\) is bounded from \(\mathcal {M}^{p,\theta}(w^{p},w^{q})\) into \(\mathcal {M}^{q,\theta ^{q/p}}(w^{q})\).

To obtain endpoint estimate for the linear commutator \([b,I_{\alpha}]\), we first need to define the weighted \(\mathcal {A}\)-average of a function f over a ball B by means of the weighted Luxemburg norm; that is, given a Young function \(\mathcal {A}\) and \(w\in A_{\infty}\), we define (see [14, 17] for instance)

$$ \|f \|_{\mathcal {A}(w),B}:=\inf \biggl\{ \sigma>0:\frac{1}{w(B)} \int_{B}\mathcal {A} \biggl(\frac{|f(x)|}{\sigma} \biggr)\cdot w(x)\,dx\leq 1 \biggr\} . $$

When \(\mathcal {A}(t)=t\), this norm is denoted by \(\|\cdot\|_{L(w),B}\), and when \(\Phi(t)=t\cdot(1+\log^{+}t)\), this norm is also denoted by \(\| \cdot\|_{L\log L(w),B}\). The complementary Young function of \(\Phi(t)\) is \(\bar{\Phi}(t)\approx e^{t}-1\) with mean Luxemburg norm denoted by \(\| \cdot\|_{\exp L(w),B}\). For \(w\in A_{\infty}\) and for every ball B in \(\mathbb {R}^{n}\), we can also show the weighted version of (2.3). Namely, the following generalized Hölder inequality in the weighted setting

$$ \frac{1}{w(B)} \int_{B}\bigl|f(x)\cdot g(x)\bigr|w(x)\,dx\leq C \|f \|_{L\log L(w),B} \|g \|_{\exp L(w),B} $$
(2.9)

is true (see [17] for instance). Now we introduce new Morrey-type spaces of \(L\log L\) type associated to θ as follows.

Definition 2.8

Let \(p=1\), \(0\leq\kappa<1\) and θ satisfy the \(\mathcal {D}_{\kappa}\) condition (2.8). For two weights u and v on \(\mathbb {R}^{n}\), we denote by \(\mathcal {M}^{1,\theta}_{L\log L}(v,u)\) the generalized weighted Morrey space of \(L\log L\) type, the space of all locally integrable functions f defined on \(\mathbb {R}^{n}\) with finite norm \(\|f \|_{\mathcal {M}^{1,\theta}_{L\log L}(v,u)}\). We have

$$ \mathcal {M}^{1,\theta}_{L\log L}(v,u):= \bigl\{ f\in L^{1}_{\mathrm{loc}}(v): \| f \|_{\mathcal {M}^{1,\theta}_{L\log L}(v,u)}< \infty \bigr\} , $$

where

$$ \|f \|_{\mathcal {M}^{1,\theta}_{L\log L}(v,u)} :=\sup_{B} \biggl\{ \frac{v(B)}{\theta(u(B))} \cdot \|f \|_{L\log L(v),B} \biggr\} . $$

Here the supremum is taken over all balls B in \(\mathbb {R}^{n}\). If \(v=u\), then we denote \(\mathcal {M}^{1,\theta}_{L\log L}(v)\) for brevity.

Note that \(t\leq t\cdot(1+\log^{+}t)\) for all \(t>0\), then, for any ball \(B\subset\mathbb {R}^{n}\) and \(v\in A_{\infty}\), we have \(\|f \| _{L(v),B}\leq \|f \|_{L\log L(v),B}\) by definition, i.e., the inequality

$$ \|f \|_{L(v),B}=\frac{1}{v(B)} \int_{B}\bigl|f(x)\bigr|\cdot v(x)\,dx\leq \|f \|_{L\log L(v),B} $$
(2.10)

holds for any ball \(B\subset\mathbb {R}^{n}\). From this, we can further see that, when θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1\), and u is another weight function,

$$\begin{aligned} \frac{1}{\theta(u(B))} \int_{B}\bigl|f(x)\bigr|\cdot v(x)\,dx &=\frac{v(B)}{\theta(u(B))}\cdot \frac{1}{v(B)} \int_{B}\bigl|f(x)\bigr|\cdot v(x)\,dx \\ &=\frac{v(B)}{\theta(u(B))}\cdot \|f \|_{L(v),B} \\ &\leq\frac{v(B)}{\theta(u(B))}\cdot \|f \|_{L\log L(v),B}. \end{aligned}$$
(2.11)

Hence, we have \(\mathcal {M}^{1,\theta}_{L\log L}(v,u)\subset\mathcal {M}^{1,\theta}(v,u)\) by definition.

In Definition 2.8, we also consider the special case when θ is taken to be \(\theta(x)=x^{\kappa}\) with \(0<\kappa<1\), and denote the corresponding space by \(\mathcal {L}^{1,\kappa}_{L\log L}(v,u)\).

Definition 2.9

Let \(p=1\) and \(0<\kappa<1\). For two weights u and v on \(\mathbb {R}^{n}\), we denote by \(\mathcal {L}^{1,\kappa}_{L\log L}(v,u)\) the weighted Morrey space of \(L\log L\) type, the space of all locally integrable functions f defined on \(\mathbb {R}^{n}\) with finite norm \(\|f \| _{\mathcal {L}^{1,\kappa}_{L\log L}(v,u)}\). We have

$$ \mathcal {L}^{1,\kappa}_{L\log L}(v,u):= \bigl\{ f\in L^{1}_{\mathrm{loc}}(v): \| f \|_{\mathcal {L}^{1,\kappa}_{L\log L}(v,u)}< \infty \bigr\} , $$

where

$$ \|f \|_{\mathcal {L}^{1,\kappa}_{L\log L}(v,u)} :=\sup_{B} \biggl\{ \frac{v(B)}{u(B)^{\kappa}} \cdot \|f \|_{L\log L(v),B} \biggr\} . $$

In this situation, we have \(\mathcal {L}^{1,\kappa}_{L\log L}(v,u)\subset \mathcal {L}^{1,\kappa}(v,u)\).

In the endpoint case \(p=1\), we will prove the following weak type \(L\log L\) estimate of the linear commutator \([b,I_{\alpha}]\) in the Morrey-type space associated to θ.

Theorem 2.4

Let \(0<\alpha<n\), \(p=1\), \(q=n/{(n-\alpha)}\) and \(w\in A_{1,q}\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1/q\) and \(b\in BMO(\mathbb {R}^{n})\), then, for any given \(\sigma>0\) and any ball \(B\subset\mathbb {R}^{n}\), there exists a constant \(C>0\) independent of f, B and \(\sigma>0\) such that

$$ \frac{1}{\theta(w^{q}(B))} \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|[b,I_{\alpha }](f) (x) \bigr|>\sigma \bigr\} \bigr) \bigr]^{1/q} \leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})}, $$

where \(\Phi(t)=t\cdot(1+\log^{+}t)\). From the definitions, we can roughly say that the commutator operator \([b,I_{\alpha}]\) is bounded from \(\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})\) into \(W\mathcal {M}^{q,\theta^{q}}(w^{q})\).

In particular, if we take \(\theta(x)=x^{\kappa}\) with \(0<\kappa<1\), then we immediately get the following strong type estimate and endpoint estimate of \(I_{\alpha}\) and \([b,I_{\alpha}]\) in the weighted Morrey spaces.

Corollary 2.1

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\), \(1/q=1/p-{\alpha}/n\) and \(w\in A_{p,q}\). If \(0<\kappa<p/q\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {L}^{p,\kappa}(w^{p},w^{q})\) into \(\mathcal {L}^{q,{\kappa q}/p}(w^{q})\).

Corollary 2.2

Let \(0<\alpha<n\), \(p=1\), \(q=n/{(n-\alpha)}\) and \(w\in A_{1,q}\). If \(0<\kappa<1/q\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {L}^{1,\kappa}(w,w^{q})\) into \(W\mathcal {L}^{q,\kappa q}(w^{q})\).

Corollary 2.3

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\), \(1/q=1/p-{\alpha}/n\) and \(w\in A_{p,q}\). If \(0<\kappa<p/q\) and \(b\in BMO(\mathbb {R}^{n})\), then the commutator operator \([b,I_{\alpha}]\) is bounded from \(\mathcal {L}^{p,\kappa}(w^{p},w^{q})\) into \(\mathcal {L}^{q,{\kappa q}/p}(w^{q})\).

Corollary 2.4

Let \(0<\alpha<n\), \(p=1\), \(q=n/{(n-\alpha)}\) and \(w\in A_{1,q}\). If \(0<\kappa<1/q\) and \(b\in BMO(\mathbb {R}^{n})\), then, for any given \(\sigma >0\) and any ball \(B\subset\mathbb {R}^{n}\), there exists a constant \(C>0\) independent of f, B and \(\sigma>0\) such that

$$ \frac{1}{w^{q}(B)^{\kappa}} \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|[b,I_{\alpha }](f) (x) \bigr|>\sigma \bigr\} \bigr) \bigr]^{1/q} \leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {L}^{1,\kappa}_{L\log L}(w,w^{q})}, $$

where \(\Phi(t)=t\cdot(1+\log^{+}t)\).

Moreover, for the extreme case \(\kappa=p/q\) of Corollary 2.1, we will show that \(I_{\alpha}\) is bounded from \(\mathcal {L}^{p,\kappa }(w^{p},w^{q})\) into \(BMO(\mathbb {R}^{n})\).

Theorem 2.5

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\), \(1/q=1/p-{\alpha}/n\) and \(w\in A_{p,q}\). If \(\kappa=p/q\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {L}^{p,\kappa}(w^{p},w^{q})\) into \(BMO(\mathbb {R}^{n})\).

It should be pointed out that Corollaries 2.1 through 2.3 were given by Komori and Shirai in [10]. Corollary 2.4 and Theorem 2.5 are new results.

Definition 2.10

In the unweighted case (when \(u=v\equiv1\)), we denote the corresponding unweighted Morrey-type spaces associated to θ by \(\mathcal {M}^{p,\theta}(\mathbb {R}^{n})\), \(W\mathcal {M}^{p,\theta}(\mathbb {R}^{n})\) and \(\mathcal {M}^{1,\theta}_{L\log L}(\mathbb {R}^{n})\), respectively. That is, let \(1\leq p<\infty\) and θ satisfy the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1\), we define

$$\begin{aligned}& \mathcal {M}^{p,\theta}\bigl(\mathbb {R}^{n}\bigr):= \biggl\{ f\in L^{p}_{\mathrm{loc}}\bigl(\mathbb {R}^{n}\bigr): \|f \|_{\mathcal {M}^{p,\theta}(\mathbb {R}^{n})}=\sup_{B} \biggl(\frac {1}{\theta(|B|)} \int_{B} \bigl|f(x)\bigr|^{p} \,dx \biggr)^{1/p}< \infty \biggr\} ,\\& W\mathcal {M}^{p,\theta}\bigl(\mathbb {R}^{n}\bigr):= \biggl\{ f: \|f \|_{W\mathcal {M}^{p,\theta}(\mathbb {R}^{n})}=\sup_{B}\sup_{\sigma >0} \frac{1}{\theta(|B|)^{1/p}}\sigma \cdot \bigl| \bigl\{ x\in B:\bigl|f(x)\bigr|>\sigma \bigr\} \bigr|^{1/p}< \infty \biggr\} , \end{aligned}$$

and

$$ \mathcal {M}^{1,\theta}_{L\log L}\bigl(\mathbb {R}^{n}\bigr):= \biggl\{ f\in L^{1}_{\mathrm{loc}}\bigl(\mathbb {R}^{n}\bigr): \|f \|_{\mathcal {M}^{1,\theta}_{L\log L}(\mathbb {R}^{n})} =\sup_{B} \biggl(\frac{|B|}{\theta(|B|)} \cdot \|f \|_{L\log L,B} \biggr)< \infty \biggr\} . $$

Naturally, when \(u(x)=v(x)\equiv1\) we have the following unweighted results.

Corollary 2.5

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\) and \(1/q=1/p-{\alpha}/n\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa< p/q\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {M}^{p,\theta}(\mathbb {R}^{n})\) into \(\mathcal {M}^{q,\theta^{q/p}}(\mathbb {R}^{n})\).

Corollary 2.6

Let \(0<\alpha<n\), \(p=1\), and \(q=n/{(n-\alpha)}\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1/q\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {M}^{1,\theta}(\mathbb {R}^{n})\) into \(W\mathcal {M}^{q,\theta^{q}}(\mathbb {R}^{n})\).

Corollary 2.7

Let \(0<\alpha<n\), \(1< p< n/{\alpha,}\) and \(1/q=1/p-{\alpha}/n\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa< p/q\) and \(b\in BMO(\mathbb {R}^{n})\), then the commutator operator \([b,I_{\alpha}]\) is bounded from \(\mathcal {M}^{p,\theta}(\mathbb {R}^{n})\) into \(\mathcal {M}^{q,\theta^{q/p}}(\mathbb {R}^{n})\).

Corollary 2.8

Let \(0<\alpha<n\), \(p=1\), and \(q=n/{(n-\alpha)}\). Assume that θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1/q\) and \(b\in BMO(\mathbb {R}^{n})\), then, for any given \(\sigma>0\) and any ball \(B\subset\mathbb {R}^{n}\), there exists a constant \(C>0\) independent of f, B and \(\sigma>0\) such that

$$ \frac{1}{\theta(|B|)} \bigl| \bigl\{ x\in B: \bigl|[b,I_{\alpha}](f) (x) \bigr|>\sigma \bigr\} \bigr|^{1/q} \leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L} (\mathbb {R}^{n})}, $$

where \(\Phi(t)=t\cdot(1+\log^{+}t)\).

We also introduce the generalized Morrey space of \(L\log L\) type.

Definition 2.11

Let \(p=1\) and Θ be a growth function on \((0,+\infty)\). We denote by \(\mathcal {L}^{1,\Theta}_{L\log L}(\mathbb {R}^{n})\) the generalized Morrey space of \(L\log L\) type, which is given by

$$ \mathcal {L}^{1,\Theta}_{L\log L}\bigl(\mathbb {R}^{n}\bigr):= \bigl\{ f\in L^{1}_{\mathrm{loc}}\bigl(\mathbb {R}^{n}\bigr): \|f \|_{\mathcal {L}^{1,\Theta}_{L\log L}(\mathbb {R}^{n})}< \infty \bigr\} , $$

where

$$ \|f \|_{\mathcal {L}^{1,\Theta}_{L\log L}(\mathbb {R}^{n})} :=\sup_{r>0;B(x_{0},r)} \biggl\{ \frac{|B(x_{0},r)|}{\Theta(r)}\cdot \|f \|_{L\log L,B(x_{0},r)} \biggr\} . $$

In this situation, we also have \(\mathcal {L}^{1,\Theta}_{L\log L}(\mathbb {R}^{n})\subset\mathcal {L}^{1,\Theta}(\mathbb {R}^{n})\).

Below we are going to show that our new Morrey-type spaces can be reduced to generalized Morrey spaces. In fact, assume that \(\theta(\cdot )\) is a positive increasing function defined in \((0,+\infty)\) and satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with some \(0\leq\kappa<1\). For any fixed \(x_{0}\in\mathbb {R}^{n}\) and \(r>0\), we set \(\Theta(r):=\theta(|B(x_{0},r)|)\). Observe that

$$ \Theta(2r)=\theta \bigl(\bigl|B(x_{0},2r)\bigr| \bigr)=\theta \bigl(2^{n}\bigl|B(x_{0},r)\bigr| \bigr). $$

Then it is easy to verify that \(\Theta(r)\), \(r>0\), is a growth function with doubling constant \(D(\Theta):1\le D(\Theta)<2^{n}\). Hence, by the choice of Θ mentioned above, we get \(\mathcal {M}^{p,\theta }(\mathbb {R}^{n})=\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) and \(W\mathcal {M}^{p,\theta}(\mathbb {R}^{n})=W\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) for \(p\in [1,+\infty)\), and \(\mathcal {M}^{1,\theta}_{L\log L}(\mathbb {R}^{n})=\mathcal {L}^{1,\Theta}_{L\log L}(\mathbb {R}^{n})\). Therefore, by the above unweighted results (Corollaries 2.5-2.8), we can also obtain strong type estimate and endpoint estimate of \(I_{\alpha}\) and \([b,I_{\alpha}]\) in the generalized Morrey spaces.

Corollary 2.9

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\) and \(1/q=1/p-{\alpha}/n\). Suppose that Θ satisfies the doubling condition (2.7) and \(1\le D(\Theta)<2^{{np}/q}\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) into \(\mathcal {L}^{q,\Theta^{q/p}}(\mathbb {R}^{n})\).

Corollary 2.10

Let \(0<\alpha<n\), \(p=1\) and \(q=n/{(n-\alpha)}\). Suppose that Θ satisfies the doubling condition (2.7) and \(1\le D(\Theta )<2^{n/q}\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {L}^{1,\Theta}(\mathbb {R}^{n})\) into \(W\mathcal {L}^{q,\Theta^{q}}(\mathbb {R}^{n})\).

Corollary 2.11

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\) and \(1/q=1/p-{\alpha}/n\). Suppose that Θ satisfies the doubling condition (2.7) with \(1\le D(\Theta)<2^{{np}/q}\) and \(b\in BMO(\mathbb {R}^{n})\), then the commutator operator \([b,I_{\alpha}]\) is bounded from \(\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) into \(\mathcal {L}^{q,\Theta^{q/p}}(\mathbb {R}^{n})\).

Corollary 2.12

Let \(0<\alpha<n\), \(p=1\) and \(q=n/{(n-\alpha)}\). Suppose that Θ satisfies the doubling condition (2.7) with \(1\le D(\Theta )<2^{n/q}\) and \(b\in BMO(\mathbb {R}^{n})\), then, for any given \(\sigma>0\) and any ball \(B(x_{0},r)\subset\mathbb {R}^{n}\), there exists a constant \(C>0\) independent of f, \(B(x_{0},r)\) and \(\sigma>0\) such that

$$ \frac{1}{\Theta(r)} \bigl| \bigl\{ x\in B(x_{0},r): \bigl|[b,I_{\alpha }](f) (x) \bigr|>\sigma \bigr\} \bigr|^{1/q} \leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {L}^{1,\Theta}_{L\log L}(\mathbb {R}^{n})}, $$

where \(\Phi(t)=t\cdot(1+\log^{+}t)\).

We will also prove the following result which can be regarded as a supplement of Corollaries 2.9 and 2.10.

Theorem 2.6

Let \(0<\alpha<n\), \(1< p< n/{\alpha}\) and \(1/q=1/p-{\alpha}/n\). Suppose that Θ satisfies the following condition:

$$ \Theta(r)\leq C\cdot r^{{np}/q}, \quad\textit{for all } r>0, $$
(2.12)

where \(C=C(\Theta)>0\) is a universal constant independent of r. Then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) into \(BMO(\mathbb {R}^{n})\).

It is worth pointing out that Corollaries 2.9 through 2.11 were obtained by Nakai in [9]. Corollary 2.12 and Theorem 2.6 seem to be new, as far as we know.

Throughout this paper, the letter C always denotes a positive constant that is independent of the essential variables but whose value may vary at each occurrence. We also use \(A\approx B\) to denote the equivalence of A and B; that is, there exist two positive constants \(C_{1}\), \(C_{2}\) independent of quantities A and B such that \(C_{1} A\leq B\leq C_{2} A\). Equivalently, we could define the above notions of this section with cubes in place of balls and we will use whichever is more appropriate, depending on the circumstances.

3 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1

Here and in the following, for any positive number \(\gamma>0\), we denote \(f^{\gamma}(x):=[f(x)]^{\gamma}\) by convention. For example, when \(1< p< q<\infty\), we have \([f^{q/p}(x)]^{1/q}=[f(x)]^{1/p}\). Let \(f\in \mathcal {M}^{p,\theta}(w^{p},w^{q})\) with \(1< p,q<\infty\) and \(w\in A_{p,q}\). For an arbitrary point \(x_{0}\in\mathbb {R}^{n}\), set \(B=B(x_{0},r_{B})\) for the ball centered at \(x_{0}\) and of radius \(r_{B}\), \(2B=B(x_{0},2r_{B})\). We represent f as

$$ f=f\cdot\chi_{2B}+f\cdot\chi_{(2B)^{c}}:=f_{1}+f_{2}; $$

by the linearity of the fractional integral operator \(I_{\alpha}\), one can write

$$ \begin{aligned} &\frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{B} \bigl|I_{\alpha}(f) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\quad\leq \frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{B} \bigl|I_{\alpha }(f_{1}) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\qquad{}+\frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{B} \bigl|I_{\alpha}(f_{2}) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\quad:= I_{1}+I_{2}. \end{aligned} $$

Below we will give the estimates of \(I_{1}\) and \(I_{2}\), respectively. By the weighted \((L^{p},L^{q})\)-boundedness of \(I_{\alpha}\) (see Theorem 1.1), we have

$$ \begin{aligned} I_{1}&\leq\frac{1}{\theta(w^{q}(B))^{1/p}} \bigl\| I_{\alpha}(f_{1}) \bigr\| _{L^{q}(w^{q})} \\ &\leq C\cdot\frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{2B}\bigl|f(x)\bigr|^{p} w^{p}(x)\,dx \biggr)^{1/p} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})} \cdot\frac{\theta(w^{q}(2B))^{1/p}}{\theta(w^{q}(B))^{1/p}}. \end{aligned} $$

Since \(w\in A_{p,q}\), we get \(w^{q}\in A_{q}\subset A_{\infty}\) by Lemma 2.1(i). Moreover, since \(0< w^{q}(B)< w^{q}(2B)<+\infty\) when \(w^{q}\in A_{q}\) with \(1< q<\infty\), then by the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ and inequality (2.1), we obtain

$$ \begin{aligned} I_{1}&\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}\cdot \frac{w^{q}(2B)^{\kappa/p}}{w^{q}(B)^{\kappa/p}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}. \end{aligned} $$

As for the term \(I_{2}\), it is clear that, when \(x\in B\) and \(y\in (2B)^{c}\), we get \(|x-y|\approx|x_{0}-y|\). We then decompose \(\mathbb {R}^{n}\) into a geometrically increasing sequence of concentric balls, and we obtain the following pointwise estimate:

$$\begin{aligned} \bigl|I_{\alpha}(f_{2}) (x) \bigr|&\leq \int_{\mathbb {R}^{n}}\frac {|f_{2}(y)|}{|x-y|^{n-\alpha}}\,dy \\ &\leq C \int_{(2B)^{c}}\frac{|f(y)|}{|x_{0}-y|^{n-\alpha}}\,dy \\ &\leq C\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B}\bigl|f(y)\bigr|\,dy. \end{aligned}$$
(3.1)

From this, it follows that

$$ I_{2}\leq C\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}}\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B}\bigl|f(y)\bigr|\,dy. $$

By using Hölder’s inequality and the \(A_{p,q}\) condition on w, we get

$$\begin{aligned} &\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B}\bigl|f(y)\bigr|\,dy \\ &\quad\leq\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \biggl( \int_{2^{j+1}B} \bigl|f(y) \bigr|^{p}w^{p}(y)\,dy \biggr)^{1/p} \biggl( \int_{2^{j+1}B}w(y)^{-p'}\,dy \biggr)^{1/{p'}} \\ &\quad\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}\cdot\frac{\theta (w^{q}(2^{j+1}B))^{1/p}}{w^{q}(2^{j+1}B)^{1/q}}. \end{aligned}$$

Hence

$$ I_{2}\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})} \times \sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))^{1/p}}{\theta (w^{q}(B))^{1/p}}\cdot \frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}}. $$

Notice that \(w^{q}\in A_{q}\subset A_{\infty}\) for \(1< q<\infty\), then by using the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ again, the inequality (2.2) with exponent \(\delta>0\) and the fact that \(0\leq\kappa< p/q\), we find that

$$\begin{aligned} \sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))^{1/p}}{\theta (w^{q}(B))^{1/p}}\cdot\frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} &\leq C\sum _{j=1}^{\infty}\frac{w^{q}(B)^{1/q-{\kappa }/p}}{w^{q}(2^{j+1}B)^{1/q-{\kappa}/p}} \\ &\leq C\sum_{j=1}^{\infty}\biggl( \frac{|B|}{|2^{j+1}B|} \biggr)^{\delta {(1/q-\kappa/p)}} \\ &\leq C\sum_{j=1}^{\infty}\biggl( \frac{1}{2^{(j+1)n}} \biggr)^{\delta {(1/q-\kappa/p)}} \\ &\leq C, \end{aligned}$$
(3.2)

which gives our desired estimate \(I_{2}\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}\). Combining the above estimates for \(I_{1}\) and \(I_{2}\), and then taking the supremum over all balls \(B\subset\mathbb {R}^{n}\), we complete the proof of Theorem 2.1. □

Proof of Theorem 2.2

Let \(f\in\mathcal {M}^{1,\theta}(w,w^{q})\) with \(1< q<\infty\) and \(w\in A_{1,q}\). For an arbitrary ball \(B=B(x_{0},r_{B})\subset\mathbb {R}^{n}\), we represent f as

$$ f=f\cdot\chi_{2B}+f\cdot\chi_{(2B)^{c}}:=f_{1}+f_{2}; $$

then, for any given \(\sigma>0\), by the linearity of the fractional integral operator \(I_{\alpha}\), one can write

$$ \begin{aligned} &\frac{1}{\theta(w^{q}(B))}\sigma\cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|I_{\alpha}(f) (x) \bigr|>\sigma \bigr\} \bigr) \bigr]^{1/q} \\ &\quad\leq\frac{1}{\theta(w^{q}(B))}\sigma\cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|I_{\alpha}(f_{1}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/q} \\ &\qquad{}+\frac{1}{\theta(w^{q}(B))}\sigma\cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|I_{\alpha}(f_{2}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/q} \\ &\quad:=I'_{1}+I'_{2}. \end{aligned} $$

We first consider the term \(I'_{1}\). By the weighted weak \((1,q)\)-boundedness of \(I_{\alpha}\) (see Theorem 1.2), we have

$$ \begin{aligned} I'_{1}&\leq C\cdot \frac{1}{\theta(w^{q}(B))}\|f_{1}\|_{L^{1}(w)} \\ &=C\cdot\frac{1}{\theta(w^{q}(B))} \biggl( \int_{2B}\bigl|f(x)\bigr|w(x)\,dx \biggr) \\ &\leq C \|f \|_{\mathcal {M}^{1,\theta}(w,w^{q})} \cdot\frac{\theta(w^{q}(2B))}{\theta(w^{q}(B))}. \end{aligned} $$

Since w is in the class \(A_{1,q}\), we get \(w^{q}\in A_{1}\subset A_{\infty }\) by Lemma 2.1(ii). Moreover, since \(0< w^{q}(B)< w^{q}(2B)<+\infty\) when \(w^{q}\in A_{1}\), then we apply the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ and inequality (2.1) to obtain

$$ \begin{aligned} I'_{1}&\leq C \|f \|_{\mathcal {M}^{1,\theta}(w,w^{q})} \cdot\frac{w^{q}(2B)^{\kappa}}{w^{q}(B)^{\kappa}} \\ &\leq C \|f \|_{\mathcal {M}^{1,\theta}(w,w^{q})}. \end{aligned} $$

As for the term \(I'_{2}\), it follows directly from Chebyshev’s inequality and the pointwise estimate (3.1) that

$$ \begin{aligned} I'_{2}&\leq\frac{1}{\theta(w^{q}(B))} \sigma\cdot\frac{ 2 }{\sigma} \biggl( \int_{B} \bigl|I_{\alpha}(f_{2}) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\leq C\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))}\sum_{j=1}^{\infty}\frac {1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B}\bigl|f(y)\bigr|\,dy. \end{aligned} $$

Moreover, by applying Hölder’s inequality and then the reverse Hölder inequality in succession, we can show that \(w^{q}\in A_{1}\) if and only if \(w\in A_{1}\cap RH_{q}\) (see [18]), where \(RH_{q}\) denotes the reverse Hölder class. Another application of \(A_{1}\) condition on w shows that

$$ \begin{aligned} \frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B} \bigl|f(y) \bigr|\,dy &\leq C\cdot\frac{|2^{j+1}B|^{\alpha/n}}{w(2^{j+1}B)}\cdot \underset {y\in2^{j+1}B}{\operatorname{ess\,inf}} w(y) \int_{2^{j+1}B}\bigl|f(y)\bigr|\,dy \\ &\leq C\cdot\frac{|2^{j+1}B|^{\alpha/n}}{w(2^{j+1}B)} \biggl( \int _{2^{j+1}B}\bigl|f(y)\bigr|w(y)\,dy \biggr) \\ &\leq C \|f \|_{\mathcal {M}^{1,\theta}(w,w^{q})}\cdot\frac {|2^{j+1}B|^{\alpha/n}}{w(2^{j+1}B)}\cdot\theta \bigl(w^{q}\bigl(2^{j+1}B\bigr)\bigr). \end{aligned} $$

In addition, note that \(w\in RH_{q}\). We are able to verify that, for any \(j\in\mathbb {Z}^{+}\),

$$ w^{q}\bigl(2^{j+1}B\bigr)^{1/q}= \biggl( \int_{2^{j+1}B}w^{q}(x)\,dx \biggr)^{1/q}\leq C \cdot\bigl|2^{j+1}B\bigr|^{1/q-1}\cdot w\bigl(2^{j+1}B\bigr), $$

which is equivalent to

$$ \frac{|2^{j+1}B|^{\alpha/n}}{w(2^{j+1}B)}\leq C\cdot\frac {1}{w^{q}(2^{j+1}B)^{1/q}}. $$
(3.3)

Consequently,

$$ I'_{2}\leq C \|f \|_{\mathcal {M}^{1,\theta}(w,w^{q})} \times\sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))}{\theta(w^{q}(B))}\cdot \frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}}. $$

Recall that \(w^{q}\in A_{1}\subset A_{\infty}\), therefore, by using the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ again, the inequality (2.2) with exponent \(\delta^{*}>0\) and the fact that \(0\leq\kappa<1/q\), we get

$$\begin{aligned} \sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))}{\theta(w^{q}(B))}\cdot\frac {w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} &\leq C\sum _{j=1}^{\infty}\frac{w^{q}(B)^{1/q-\kappa }}{w^{q}(2^{j+1}B)^{1/q-\kappa}} \\ &\leq C\sum_{j=1}^{\infty}\biggl( \frac{|B|}{|2^{j+1}B|} \biggr)^{\delta ^{*}(1/q-\kappa)} \\ &\leq C\sum_{j=1}^{\infty}\biggl( \frac{1}{2^{(j+1)n}} \biggr)^{\delta ^{*}(1/q-\kappa)} \\ &\leq C, \end{aligned}$$
(3.4)

which implies our desired estimate \(I'_{2}\leq C \|f \|_{\mathcal {M}^{1,\theta}(w,w^{q})}\). Summing up the above estimates for \(I'_{1}\) and \(I'_{2}\), and then taking the supremum over all balls \(B\subset\mathbb {R}^{n}\) and all \(\sigma>0\), we finish the proof of Theorem 2.2. □

4 Proofs of Theorems 2.3 and 2.4

To prove our main theorems in this section, we need the following lemma about \(BMO\) functions.

Lemma 4.1

Let b be a function in \(BMO(\mathbb {R}^{n})\).

  1. (i)

    For every ball B in \(\mathbb {R}^{n}\) and for all \(j\in\mathbb {Z}^{+}\), then

    $$ |b_{2^{j+1}B}-b_{B} |\leq C\cdot(j+1)\|b\|_{*}. $$
  2. (ii)

    For \(1< q<\infty\), every ball B in \(\mathbb {R}^{n}\) and for all \(\mu\in A_{\infty}\), then

    $$ \biggl( \int_{B} \bigl|b(x)-b_{B} \bigr|^{q}\mu(x)\,dx \biggr)^{1/q}\leq C\|b\|_{*}\cdot \mu(B)^{1/q}. $$

Proof

For the proof of (i), we refer the reader to [19]. For the proof of (ii), we refer the reader to [20]. □

Proof of Theorem 2.3

Let \(f\in\mathcal {M}^{p,\theta}(w^{p},w^{q})\) with \(1< p,q<\infty\) and \(w\in A_{p,q}\). For each fixed ball \(B=B(x_{0},r_{B})\subset\mathbb {R}^{n}\), as before, we represent f as \(f=f_{1}+f_{2}\), where \(f_{1}=f\cdot\chi_{2B}\), \(2B=B(x_{0},2r_{B})\subset\mathbb {R}^{n}\). By the linearity of the commutator operator \([b,I_{\alpha}]\), we write

$$\begin{aligned} &\frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{B} \bigl|[b,I_{\alpha}](f) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\quad\leq \frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{B} \bigl|[b,I_{\alpha }](f_{1}) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\qquad{}+\frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{B} \bigl|[b,I_{\alpha }](f_{2}) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\quad:= J_{1}+J_{2}. \end{aligned}$$

Since w is in the class \(A_{p,q}\), we get \(w^{q}\in A_{q}\subset A_{\infty }\) by Lemma 2.1(i). By using Theorem 1.3, the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ and inequality (2.1), we obtain

$$\begin{aligned} J_{1}&\leq\frac{1}{\theta(w^{q}(B))^{1/p}} \bigl\| [b,I_{\alpha}](f_{1}) \bigr\| _{L^{q}(w^{q})} \\ &\leq C\cdot\frac{1}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{2B}\bigl|f(x)\bigr|^{p} w^{p}(x)\,dx \biggr)^{1/p} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})} \cdot\frac{\theta(w^{q}(2B))^{1/p}}{\theta(w^{q}(B))^{1/p}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}\cdot\frac {w^{q}(2B)^{\kappa/p}}{w^{q}(B)^{\kappa/p}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}. \end{aligned}$$

Let us now turn to the estimate of \(J_{2}\). By definition, for any \(x\in B\), we have

$$ \bigl|[b,I_{\alpha}](f_{2}) (x) \bigr|\leq \bigl|b(x)-b_{B} \bigr|\cdot \bigl|I_{\alpha}(f_{2}) (x) \bigr| + \bigl|I_{\alpha} \bigl([b_{B}-b]f_{2} \bigr) (x) \bigr|. $$

In the proof of Theorem 2.1, we have already shown that (see (3.1))

$$ \bigl|I_{\alpha}(f_{2}) (x) \bigr|\leq C\sum_{j=1}^{\infty}\frac {1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B}\bigl|f(y)\bigr|\,dy. $$

Following the same argument as in (3.1), we can also prove that

$$\begin{aligned} \bigl|I_{\alpha} \bigl([b_{B}-b]f_{2} \bigr) (x) \bigr| &\leq \int_{\mathbb {R}^{n}}\frac{|[b_{B}-b(y)]f_{2}(y)|}{|x-y|^{n-\alpha }}\,dy \\ &\leq C \int_{(2B)^{c}}\frac{|[b_{B}-b(y)]f(y)|}{|x_{0}-y|^{n-\alpha}}\,dy \\ &\leq C\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B} \bigl|b(y)-b_{B} \bigr|\cdot \bigl|f(y) \bigr|\,dy. \end{aligned}$$
(4.1)

Hence, from the above two pointwise estimates for \(|I_{\alpha}(f_{2})(x) |\) and \(|I_{\alpha}([b_{B}-b]f_{2} )(x) |\), it follows that

$$\begin{aligned}[b] J_{2}\leq{}&\frac{C}{\theta(w^{q}(B))^{1/p}} \biggl( \int_{B} \bigl|b(x)-b_{B} \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \times \Biggl(\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B}\bigl|f(y)\bigr|\,dy \Biggr) \\ &{}+C\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}}\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B} |b_{2^{j+1}B}-b_{B} |\cdot \bigl|f(y) \bigr|\,dy \\ &{}+C\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}}\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B} \bigl|b(y)-b_{2^{j+1}B} \bigr|\cdot \bigl|f(y) \bigr|\,dy \\ :={}&J_{3}+J_{4}+J_{5}. \end{aligned} $$

Below we will give the estimates of \(J_{3}\), \(J_{4}\) and \(J_{5}\), respectively. To estimate \(J_{3}\), note that \(w^{q}\in A_{q}\subset A_{\infty }\) with \(1< q<\infty\). Using the second part of Lemma 4.1, Hölder’s inequality, and the \(A_{p,q}\) condition on w, we obtain

$$ \begin{aligned} J_{3}\leq{}& C\|b\|_{*}\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}} \times \Biggl(\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B}\bigl|f(y)\bigr|\,dy \Biggr) \\ \leq{}& C\|b\|_{*}\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}} \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \biggl( \int_{2^{j+1}B} \bigl|f(y) \bigr|^{p}w^{p}(y)\,dy \biggr)^{1/p} \\ &{}\times \biggl( \int_{2^{j+1}B}w(y)^{-{p'}}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})} \times\sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))^{1/p}}{\theta (w^{q}(B))^{1/p}}\cdot\frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}, \end{aligned} $$

where in the last inequality we have used the estimate (3.2). To estimate \(J_{4}\), applying the first part of Lemma 4.1, Hölder’s inequality, and the \(A_{p,q}\) condition on w, we can deduce that

$$ \begin{aligned} J_{4}\leq{}& C\|b\|_{*}\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}} \times\sum_{j=1}^{\infty}\frac{(j+1)}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B}\bigl|f(y)\bigr|\,dy \\ \leq{}& C\|b\|_{*}\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}} \sum_{j=1}^{\infty}\frac{(j+1)}{|2^{j+1}B|^{1-{\alpha}/n}} \biggl( \int_{2^{j+1}B} \bigl|f(y) \bigr|^{p}w^{p}(y)\,dy \biggr)^{1/p} \\ {}&\times \biggl( \int_{2^{j+1}B}w(y)^{-{p'}}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})} \times\sum_{j=1}^{\infty}(j+1 ) \cdot\frac{\theta(w^{q}(2^{j+1}B))^{1/p}}{\theta(w^{q}(B))^{1/p}}\cdot\frac {w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}}. \end{aligned} $$

For any \(j\in\mathbb {Z}^{+}\), since \(0< w^{q}(B)< w^{q}(2^{j+1}B)<+\infty\) when \(w^{q}\in A_{q}\) with \(1< q<\infty\), by using the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ and the inequality (2.2) with exponent \(\delta>0\), we thus obtain

$$\begin{aligned} \sum_{j=1}^{\infty}(j+1 )\cdot \frac{\theta (w^{q}(2^{j+1}B))^{1/p}}{\theta(w^{q}(B))^{1/p}}\cdot\frac {w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} &\leq C\sum _{j=1}^{\infty}(j+1 )\cdot\frac{w^{q}(B)^{1/q-{\kappa }/p}}{w^{q}(2^{j+1}B)^{1/q-{\kappa}/p}} \\ &\leq C\sum_{j=1}^{\infty}(j+1 )\cdot \biggl( \frac {|B|}{|2^{j+1}B|} \biggr)^{\delta{(1/q-\kappa/p)}} \\ &\leq C\sum_{j=1}^{\infty}(j+1 )\cdot \biggl( \frac {1}{2^{(j+1)n}} \biggr)^{\delta{(1/q-\kappa/p)}} \\ &\leq C, \end{aligned}$$
(4.2)

where the last series is convergent since the exponent \(\delta {(1/q-\kappa/p)}\) is positive. This implies our desired estimate \(J_{4}\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}\). It remains to estimate the last term \(J_{5}\). An application of Hölder’s inequality shows that

$$\begin{aligned} J_{5}\leq{}& C\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}}\sum _{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \biggl( \int_{2^{j+1}B} \bigl|f(y) \bigr|^{p}w^{p}(y)\,dy \biggr)^{1/p} \\ &{}\times \biggl( \int_{2^{j+1}B} \bigl|b(y)-b_{2^{j+1}B} \bigr|^{p'}w(y)^{-{p'}}\,dy \biggr)^{1/{p'}}. \end{aligned}$$

If we set \(\mu(y)=w(y)^{-{p'}}\), then we have \(\mu\in A_{p'}\subset A_{\infty}\) because \(w\in A_{p,q}\) by Lemma 2.1(i). Thus, it follows from the second part of Lemma 4.1 and the \(A_{p,q}\) condition that

$$\begin{aligned} &\biggl( \int_{2^{j+1}B} \bigl|b(y)-b_{2^{j+1}B} \bigr|^{p'}\mu(y)\,dy \biggr)^{1/{p'}} \\ &\quad\leq C\|b\|_{*}\cdot\mu \bigl(2^{j+1}B \bigr)^{1/{p'}} \\ &\quad=C\|b\|_{*}\cdot \biggl( \int_{2^{j+1}B}w(y)^{-{p'}}\,dy \biggr)^{1/{p'}} \\ &\quad\leq C\|b\|_{*}\cdot\frac{|2^{j+1}B|^{1-{\alpha}/n}}{w^{q}(2^{j+1}B)^{1/q}}. \end{aligned}$$
(4.3)

Therefore, in view of the estimates (4.3) and (3.2), we conclude that

$$ \begin{aligned} J_{5}&\leq C\|b\|_{*}\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))^{1/p}} \sum_{j=1}^{\infty}\frac{1}{w^{q}(2^{j+1}B)^{1/q}} \biggl( \int_{2^{j+1}B} \bigl|f(y) \bigr|^{p}w^{p}(y)\,dy \biggr)^{1/p} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}\times \sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))^{1/p}}{\theta (w^{q}(B))^{1/p}}\cdot\frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(w^{p},w^{q})}. \end{aligned} $$

Summarizing the estimates derived above and then taking the supremum over all balls \(B\subset\mathbb {R}^{n}\), we complete the proof of Theorem 2.3. □

Proof of Theorem 2.4

For any fixed ball \(B=B(x_{0},r_{B})\) in \(\mathbb {R}^{n}\), as before, we represent f as \(f=f_{1}+f_{2}\), where \(f_{1}=f\cdot\chi_{2B}\), \(2B=B(x_{0},2r_{B})\subset\mathbb {R}^{n}\). Then, for any given \(\sigma>0\), by the linearity of the commutator operator \([b,I_{\alpha}]\), we write

$$ \begin{aligned} &\frac{1}{\theta(w^{q}(B))}\cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|[b,I_{\alpha}](f) (x) \bigr|>\sigma \bigr\} \bigr) \bigr]^{1/q} \\ &\quad\leq\frac{1}{\theta(w^{q}(B))}\cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|[b,I_{\alpha}](f_{1}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/q} \\ &\qquad{}+\frac{1}{\theta(w^{q}(B))}\cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|[b,I_{\alpha}](f_{2}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/q} \\ &\quad:=J'_{1}+J'_{2}. \end{aligned} $$

We first consider the term \(J'_{1}\). By using Theorem 1.4 and the previous estimate (2.11), we get

$$\begin{aligned} J'_{1}&\leq C\cdot \frac{1}{\theta(w^{q}(B))} \int_{\mathbb {R}^{n}}\Phi \biggl(\frac{|f_{1}(x)|}{\sigma} \biggr)\cdot w(x)\,dx \\ &= C\cdot\frac{1}{\theta(w^{q}(B))} \int_{2B}\Phi \biggl(\frac{|f(x)|}{\sigma } \biggr)\cdot w(x)\,dx \\ &= C\cdot\frac{\theta(w^{q}(2B))}{\theta(w^{q}(B))}\cdot\frac{1}{\theta(w^{q}(2B))} \int_{2B}\Phi \biggl(\frac{|f(x)|}{\sigma} \biggr)\cdot w(x)\,dx \\ &\leq C\cdot\frac{\theta(w^{q}(2B))}{\theta(w^{q}(B))}\cdot\frac {w(2B)}{\theta(w^{q}(2B))} \cdot \biggl\| \Phi \biggl( \frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2B}. \end{aligned}$$

Since w is a weight in the class \(A_{1,q}\), one has \(w^{q}\in A_{1}\subset A_{\infty}\) by Lemma 2.1(ii). Moreover, since \(0< w^{q}(B)< w^{q}(2B)<+\infty\) when \(w^{q}\in A_{1}\), by the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ and inequality (2.1), we have

$$ \begin{aligned} J'_{1}&\leq C\cdot \frac{w^{q}(2B)^{\kappa}}{w^{q}(B)^{\kappa}}\cdot \biggl\{ \frac{w(2B)}{\theta(w^{q}(2B))}\cdot \biggl\| \Phi \biggl( \frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2B} \biggr\} \\ &\leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})}, \end{aligned} $$

which is our desired estimate. We now turn to dealing with the term \(J'_{2}\). Recall that the inequality

$$ \bigl|[b,I_{\alpha}](f_{2}) (x) \bigr|\leq \bigl|b(x)-b_{B} \bigr|\cdot \bigl|I_{\alpha}(f_{2}) (x) \bigr| + \bigl|I_{\alpha} \bigl([b_{B}-b]f_{2} \bigr) (x) \bigr| $$

is valid. So we can further decompose \(J'_{2}\) as

$$ \begin{aligned} J'_{2}\leq{}&\frac{1}{\theta(w^{q}(B))} \cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|b(x)-b_{B} \bigr|\cdot \bigl|I_{\alpha }(f_{2}) (x) \bigr|>\sigma/4 \bigr\} \bigr) \bigr]^{1/q}\\ &{}+\frac{1}{\theta(w^{q}(B))}\cdot \bigl[w^{q} \bigl( \bigl\{ x\in B: \bigl|I_{\alpha} \bigl([b_{B}-b]f_{2} \bigr) (x) \bigr|> \sigma/4 \bigr\} \bigr) \bigr]^{1/q} \\ :={}&J'_{3}+J'_{4}. \end{aligned} $$

By using the previous pointwise estimate (3.1), Chebyshev’s inequality together with Lemma 4.1(ii), we deduce that

$$ \begin{aligned} J'_{3}&\leq\frac{1}{\theta(w^{q}(B))} \cdot\frac{ 4 }{\sigma} \biggl( \int_{B} \bigl|b(x)-b_{B} \bigr|^{q}\cdot \bigl|I_{\alpha}(f_{2}) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\leq C\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B}\frac{|f(y)|}{\sigma}\,dy \times\frac{1}{\theta(w^{q}(B))}\cdot \biggl( \int_{B} \bigl|b(x)-b_{B} \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ &\leq C\|b\|_{*}\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B}\frac{|f(y)|}{\sigma}\,dy \times\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))}. \end{aligned} $$

Furthermore, note that \(t\leq\Phi(t)=t\cdot(1+\log^{+}t)\) for any \(t>0\). As we pointed out in Theorem 2.2 that \(w^{q}\in A_{1}\) if and only if \(w\in A_{1}\cap RH_{q}\), it then follows from the \(A_{1}\) condition and the previous estimate (2.10) that

$$ \begin{aligned} J'_{3}\leq{}& C\sum _{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int _{2^{j+1}B}\Phi \biggl(\frac{|f(y)|}{\sigma} \biggr)\,dy \times \frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \\ \leq{}& C\sum_{j=1}^{\infty}\frac{|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)} \int _{2^{j+1}B}\Phi \biggl(\frac{|f(y)|}{\sigma} \biggr)\cdot w(y)\,dy \times\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \\ \leq{}& C\sum_{j=1}^{\infty}\biggl\| \Phi \biggl( \frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2^{j+1}B} \times\bigl|2^{j+1}B\bigr|^{{\alpha}/n} \cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \\ ={}& C\sum_{j=1}^{\infty}\biggl\{ \frac{w(2^{j+1}B)}{\theta (w^{q}(2^{j+1}B))}\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2^{j+1}B} \biggr\} \\ &{}\times\frac{|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)}\cdot\frac{\theta (w^{q}(2^{j+1}B))}{\theta(w^{q}(B))}\cdot w^{q}(B)^{1/q}. \end{aligned} $$

In view of (3.3) and (3.4), we have

$$ \begin{aligned} J'_{3}&\leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})} \times\sum _{j=1}^{\infty}\frac{|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)}\cdot \frac{\theta(w^{q}(2^{j+1}B))}{\theta(w^{q}(B))} \cdot w^{q}(B)^{1/q} \\ &\leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})} \times \sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))}{\theta(w^{q}(B))}\cdot \frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} \\ &\leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})}. \end{aligned} $$

On the other hand, applying the pointwise estimate (4.1) and Chebyshev’s inequality, we get

$$ \begin{aligned} J'_{4}\leq{}&\frac{1}{\theta(w^{q}(B))} \cdot\frac{ 4 }{\sigma} \biggl( \int_{B} \bigl|I_{\alpha} \bigl([b_{B}-b]f_{2} \bigr) (x) \bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \\ \leq{}&\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))}\cdot\frac{ C }{\sigma} \sum _{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B} \bigl|b(y)-b_{B} \bigr|\cdot \bigl|f(y) \bigr|\,dy \\ \leq{}&\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))}\cdot\frac{ C }{\sigma} \sum _{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B} \bigl|b(y)-b_{2^{j+1}B} \bigr|\cdot \bigl|f(y) \bigr|\,dy \\ &{}+\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))}\cdot\frac{ C }{\sigma} \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \int_{2^{j+1}B} |b_{2^{j+1}B}-b_{B} |\cdot \bigl|f(y) \bigr|\,dy \\ :={}&J'_{5}+J'_{6}. \end{aligned} $$

For the term \(J'_{5}\), since \(w\in A_{1}\), it follows from the \(A_{1}\) condition and the fact \(t\leq\Phi(t)\) that

$$\begin{aligned} J'_{5}&\leq\frac{ C }{\sigma} \cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}\frac{|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)} \int _{2^{j+1}B} \bigl|b(y)-b_{2^{j+1}B} \bigr|\cdot \bigl|f(y) \bigr|w(y)\,dy \\ &\leq C\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}\frac{|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)} \int _{2^{j+1}B} \bigl|b(y)-b_{2^{j+1}B} \bigr| \cdot\Phi \biggl( \frac{|f(y)|}{\sigma} \biggr)w(y)\,dy. \end{aligned}$$

Furthermore, we use the generalized Hölder inequality with weight (2.9) to obtain

$$ \begin{aligned} J'_{5}&\leq C\cdot \frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}\bigl|2^{j+1}B \bigr|^{{\alpha}/n}\cdot \| b-b_{2^{j+1}B} \|_{\exp L(w),2^{j+1}B} \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2^{j+1}B} \\ &\leq C\|b\|_{*}\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}\bigl|2^{j+1}B \bigr|^{{\alpha}/n}\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2^{j+1}B}. \end{aligned} $$

In the last inequality, we have used the well-known fact that (see [17])

$$ \|b-b_{B} \|_{\exp L(w),B}\leq C\|b\|_{*}, \quad\mbox{for any ball }B\subset\mathbb {R}^{n}. $$
(4.4)

It is equivalent to the inequality

$$ \frac{1}{w(B)} \int_{B}\exp \biggl(\frac{|b(y)-b_{B}|}{c_{0}\|b\|_{*}} \biggr)w(y)\,dy\leq C, $$

which is just a corollary of the well-known John-Nirenberg inequality (see [16]) and the comparison property of \(A_{1}\) weights. Hence, by the estimates (3.3) and (3.4),

$$ \begin{aligned} J'_{5}\leq{}& C\|b\|_{*}\sum _{j=1}^{\infty}\biggl\{ \frac{w(2^{j+1}B)}{\theta (w^{q}(2^{j+1}B))}\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2^{j+1}B} \biggr\} \\ &{}\times\frac{|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)}\cdot\frac{\theta (w^{q}(2^{j+1}B))}{\theta(w^{q}(B))}\cdot w^{q}(B)^{1/q} \\ \leq{}& C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})} \times \sum_{j=1}^{\infty}\frac{\theta(w^{q}(2^{j+1}B))}{\theta(w^{q}(B))}\cdot \frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} \\ \leq{}& C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})}. \end{aligned} $$

For the last term \(J'_{6}\) we proceed as follows. Using the first part of Lemma 4.1 together with the facts \(w\in A_{1}\) and \(t\leq\Phi (t)=t\cdot(1+\log^{+}t)\), we deduce that

$$ \begin{aligned} J'_{6}&\leq C\cdot \frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}(j+1)\|b \|_{*}\cdot\frac{1}{|2^{j+1}B|^{1-{\alpha }/n}} \int_{2^{j+1}B}\frac{|f(y)|}{\sigma}\,dy \\ &\leq C\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}(j+1) \|b\|_{*}\cdot\frac{|2^{j+1}B|^{{\alpha }/n}}{w(2^{j+1}B)} \int_{2^{j+1}B}\frac{|f(y)|}{\sigma}\cdot w(y)\,dy \\ &\leq C\|b\|_{*}\cdot\frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}\frac{(j+1)|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)} \int _{2^{j+1}B}\Phi \biggl(\frac{|f(y)|}{\sigma} \biggr)\cdot w(y)\,dy. \end{aligned} $$

Making use of the inequalities (2.10) and (3.3), we further obtain

$$\begin{aligned} J'_{6}\leq{}& C\cdot \frac{w^{q}(B)^{1/q}}{\theta(w^{q}(B))} \sum_{j=1}^{\infty}(j+1)\bigl|2^{j+1}B\bigr|^{{\alpha}/n} \cdot \biggl\| \Phi \biggl(\frac {|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2^{j+1}B} \\ ={}&C\cdot\sum_{j=1}^{\infty}\biggl\{ \frac{w(2^{j+1}B)}{\theta (w^{q}(2^{j+1}B))}\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{L\log L(w),2^{j+1}B} \biggr\} \\ &{}\times(j+1)\cdot\frac{|2^{j+1}B|^{{\alpha}/n}}{w(2^{j+1}B)}\cdot\frac {\theta(w^{q}(2^{j+1}B))}{\theta(w^{q}(B))}\cdot w^{q}(B)^{1/q} \\ \leq{}& C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})} \times \sum_{j=1}^{\infty}(j+1)\cdot\frac{\theta(w^{q}(2^{j+1}B))}{\theta (w^{q}(B))} \cdot\frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}}. \end{aligned}$$

Recall that \(w^{q}\in A_{1}\subset A_{\infty}\) with \(1< q<\infty\). We can now argue exactly as we did in the estimation of \(J_{4}\) to get (now choose \(\delta^{*}\) in (2.2))

$$\begin{aligned} \sum_{j=1}^{\infty}(j+1 )\cdot \frac{\theta(w^{q}(2^{j+1}B))}{\theta (w^{q}(B))}\cdot\frac{w^{q}(B)^{1/q}}{w^{q}(2^{j+1}B)^{1/q}} &\leq C\sum _{j=1}^{\infty}(j+1 )\cdot\frac{w^{q}(B)^{1/q-\kappa }}{w^{q}(2^{j+1}B)^{1/q-\kappa}} \\ &\leq C\sum_{j=1}^{\infty}(j+1 )\cdot \biggl( \frac {|B|}{|2^{j+1}B|} \biggr)^{\delta^{*}{(1/q-\kappa)}} \\ &\leq C\sum_{j=1}^{\infty}(j+1 )\cdot \biggl( \frac {1}{2^{(j+1)n}} \biggr)^{\delta^{*}{(1/q-\kappa)}} \\ &\leq C. \end{aligned}$$
(4.5)

Notice that the exponent \(\delta^{*}{(1/q-\kappa)}\) is positive by the choice of κ, which guarantees that the last series is convergent. If we substitute this estimate (4.5) into the term \(J'_{6}\), then we get the desired inequality

$$ J'_{6}\leq C\cdot \biggl\| \Phi \biggl(\frac{|f|}{ \sigma } \biggr) \biggr\| _{\mathcal {M}^{1,\theta}_{L\log L}(w,w^{q})}. $$

This completes the proof of Theorem 2.4. □

5 Proofs of Theorems 2.5 and 2.6

Proof of Theorem 2.5

Let \(f\in\mathcal {M}^{p,\theta}(w^{p},w^{q})\) with \(1< p,q<\infty\) and \(w\in A_{p,q}\). For any given ball \(B=B(x_{0},r_{B})\) in \(\mathbb {R}^{n}\), it suffices to prove that the following inequality

$$ \frac{1}{|B|} \int_{B}\bigl|I_{\alpha}f(x)-(I_{\alpha}f)_{B}\bigr|\,dx\leq C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})} $$
(5.1)

holds. Decompose f as \(f=f_{1}+f_{2}\), where \(f_{1}=f\cdot\chi_{4B}\), \(f_{2}=f\cdot\chi_{(4B)^{c}}\), \(4B=B(x_{0},4r_{B})\). By the linearity of the fractional integral operator \(I_{\alpha}\), the left-hand side of (5.1) can be divided into two parts. That is,

$$ \begin{aligned} &\frac{1}{|B|} \int_{B}\bigl|I_{\alpha}f(x)-(I_{\alpha}f)_{B}\bigr|\,dx \\ &\quad\leq\frac{1}{|B|} \int_{B}\bigl|I_{\alpha}f_{1}(x)-(I_{\alpha}f_{1})_{B}\bigr|\,dx+\frac {1}{|B|} \int_{B}\bigl|I_{\alpha}f_{2}(x)-(I_{\alpha}f_{2})_{B}\bigr|\,dx \\ &\quad:=I+II. \end{aligned} $$

First let us consider the term I. Applying the weighted \((L^{p},L^{q})\)-boundedness of \(I_{\alpha}\) (see Theorem 1.1) and Hölder’s inequality, we obtain

$$\begin{aligned} I&\leq\frac{2}{|B|} \int_{B}\bigl|I_{\alpha}f_{1}(x)\bigr|\,dx \\ &\leq\frac{2}{|B|} \biggl( \int_{B}\bigl|I_{\alpha}f_{1}(x)\bigr|^{q}w^{q}(x)\,dx \biggr)^{1/q} \biggl( \int_{B} w(x)^{-q'}\,dx \biggr)^{1/{q'}} \\ &\leq\frac{C}{|B|} \biggl( \int_{4B}\bigl|f(x)\bigr|^{p}w^{p}(x)\,dx \biggr)^{1/p} \biggl( \int_{B} w(x)^{-q'}\,dx \biggr)^{1/{q'}} \\ &\leq C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})} \cdot\frac{w^{q}(4B)^{{\kappa}/p}}{|B|} \biggl( \int_{B} w(x)^{-q'}\,dx \biggr)^{1/{q'}}. \end{aligned}$$

Since w is a weight in the class \(A_{p,q}\), one has \(w^{q}\in A_{q}\subset A_{\infty}\) by Lemma 2.1(i). By definition, it reads

$$ \biggl(\frac{1}{|B|} \int_{B} w^{q}(x)\,dx \biggr)^{1/q} \biggl( \frac{1}{|B|} \int_{B} \bigl[w^{q}(x)\bigr]^{-q'/q}\,dx \biggr)^{1/{q'}}\leq C, $$

which implies

$$ \biggl( \int_{B} w(x)^{-q'}\,dx \biggr)^{1/{q'}}\leq C \cdot\frac{|B|}{w^{q}(B)^{1/q}}. $$
(5.2)

Since \(w^{q}\in A_{q}\subset A_{\infty}\), \(w^{q}\in\Delta_{2}\). Using the inequalities (5.2) and (2.1) and noting the fact that \(\kappa=p/q\), we have

$$ \begin{aligned} I&\leq C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})}\cdot\frac {w^{q}(4B)^{1/q}}{w^{q}(B)^{1/q}} \leq C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})}. \end{aligned} $$

Now we estimate II. For any \(x\in B\),

$$ \begin{aligned} \bigl|I_{\alpha}f_{2}(x)-(I_{\alpha}f_{2})_{B}\bigr|&= \biggl|\frac{1}{|B|} \int_{B} \bigl[I_{\alpha}f_{2}(x)-I_{\alpha}f_{2}(y) \bigr]\,dy \biggr| \\ &= \biggl|\frac{1}{|B|} \int_{B} \biggl\{ \int_{(4B)^{c}} \biggl[\frac {1}{|x-z|^{n-\alpha}}-\frac{1}{|y-z|^{n-\alpha}} \biggr]f(z)\,dz \biggr\} \,dy \biggr| \\ &\leq\frac{1}{|B|} \int_{B} \biggl\{ \int_{(4B)^{c}} \biggl|\frac {1}{|x-z|^{n-\alpha}}-\frac{1}{|y-z|^{n-\alpha}} \biggr|\cdot\bigl|f(z)\bigr|\,dz \biggr\} \,dy. \end{aligned} $$

Since both x and y are in B, \(z\in(4B)^{c}\), by a purely geometric observation, we must have \(|x-z|\geq2|x-y|\). This fact along with the mean value theorem yields

$$\begin{aligned} \bigl|I_{\alpha}f_{2}(x)-(I_{\alpha}f_{2})_{B}\bigr| &\leq\frac{C}{|B|} \int_{B} \biggl\{ \int_{(4B)^{c}}\frac{|x-y|}{|x-z|^{n-\alpha +1}}\cdot\bigl|f(z)\bigr|\,dz \biggr\} \,dy \\ &\leq C \int_{(4B)^{c}}\frac{r_{B}}{|z-x_{0}|^{n-\alpha+1}}\cdot\bigl|f(z)\bigr|\,dz \\ &\leq C\sum_{j=2}^{\infty}\frac{1}{2^{j}} \cdot\frac{1}{|2^{j+1}B|^{1-{\alpha }/n}} \int_{2^{j+1}B}\bigl|f(z)\bigr|\,dz. \end{aligned}$$
(5.3)

Furthermore, by using Hölder’s inequality and the \(A_{p,q}\) condition on w, we get, for any \(x\in B\),

$$\begin{aligned} \bigl|I_{\alpha}f_{2}(x)-(I_{\alpha}f_{2})_{B}\bigr| \leq{}& C\sum_{j=2}^{\infty}\frac {1}{2^{j}}\cdot \frac{1}{|2^{j+1}B|^{1-{\alpha}/n}} \\ &{}\times \biggl( \int_{2^{j+1}B} \bigl|f(y) \bigr|^{p}w^{p}(y)\,dy \biggr)^{1/p} \biggl( \int_{2^{j+1}B}w(y)^{-p'}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})}\cdot \sum_{j=2}^{\infty}\frac{1}{2^{j}}\cdot\frac{w^{q}(2^{j+1}B)^{{\kappa }/p}}{w^{q}(2^{j+1}B)^{1/q}} \\ ={}&C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})}\cdot \sum_{j=2}^{\infty}\frac{1}{2^{j}} \\ \leq{}& C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})}. \end{aligned}$$
(5.4)

From the pointwise estimate (5.4), it readily follows that

$$ II=\frac{1}{|B|} \int_{B}\bigl|I_{\alpha}f_{2}(x)-(I_{\alpha}f_{2})_{B}\bigr|\,dx \leq C \|f \|_{\mathcal {L}^{p,\kappa}(w^{p},w^{q})}. $$

By combining the above estimates for I and II, we are done. □

Proof of Theorem 2.6

Let \(f\in\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})\) with \(1< p<\infty\). For any given ball \(B=B(x_{0},r_{B})\) in \(\mathbb {R}^{n}\), it is sufficient to prove that the following inequality

$$ \frac{1}{|B(x_{0},r_{B})|} \int_{B(x_{0},r_{B})}\bigl|I_{\alpha}f(x)-(I_{\alpha }f)_{B}\bigr|\,dx\leq C \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})} $$
(5.5)

holds. Decompose f as \(f=f_{1}+f_{2}\), where \(f_{1}=f\cdot\chi_{4B}\), \(f_{2}=f\cdot\chi_{(4B)^{c}}\), \(4B=B(x_{0},4r_{B})\). As in the proof of Theorem 2.5, we can also divide the left-hand side of (5.5) into two parts. That is,

$$ \begin{aligned} &\frac{1}{|B(x_{0},r_{B})|} \int_{B(x_{0},r_{B})}\bigl|I_{\alpha}f(x)-(I_{\alpha }f)_{B}\bigr|\,dx \\ &\quad\leq\frac{1}{|B(x_{0},r_{B})|} \int_{B(x_{0},r_{B})}\bigl|I_{\alpha}f_{1}(x)-(I_{\alpha }f_{1})_{B}\bigr|\,dx +\frac{1}{|B(x_{0},r_{B})|} \int_{B(x_{0},r_{B})}\bigl|I_{\alpha}f_{2}(x)-(I_{\alpha }f_{2})_{B}\bigr|\,dx \\ &\quad:=I'+II'. \end{aligned} $$

First let us consider the term \(I'\). Since \(I_{\alpha}\) is bounded from \(L^{p}(\mathbb {R}^{n})\) to \(L^{q}(\mathbb {R}^{n})\), by Hölder’s inequality, we obtain

$$ \begin{aligned} I'&\leq\frac{2}{|B(x_{0},r_{B})|} \int_{B(x_{0},r_{B})}\bigl|I_{\alpha}f_{1}(x)\bigr|\,dx \\ &\leq\frac{2}{|B(x_{0},r_{B})|} \biggl( \int_{B(x_{0},r_{B})}\bigl|I_{\alpha}f_{1}(x)\bigr|^{q} \,dx \biggr)^{1/q} \biggl( \int_{B(x_{0},r_{B})}1^{q'}\,dx \biggr)^{1/{q'}} \\ &\leq\frac{C}{|B(x_{0},r_{B})|} \biggl( \int_{B(x_{0},4r_{B})}\bigl|f(x)\bigr|^{p} \,dx \biggr)^{1/p} \bigl|B(x_{0},r_{B})\bigr|^{1/{q'}} \\ &\leq C \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})} \cdot\frac{\Theta(4r_{B})^{1/p}}{|B(x_{0},r_{B})|^{1/q}}. \end{aligned} $$

Applying our assumption (2.12) on Θ, we further have

$$ I'\leq C \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})} \cdot\frac{(4r_{B})^{n/q}}{|B(x_{0},r_{B})|^{1/q}}\leq C \|f \| _{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})}. $$

On the other hand, in Theorem 2.5, we have already shown that, for any \(x\in B\) (see (5.3)),

$$ \bigl|I_{\alpha}f_{2}(x)-(I_{\alpha}f_{2})_{B}\bigr| \leq C\sum_{j=2}^{\infty}\frac{1}{2^{j}} \cdot\frac{1}{|B(x_{0},2^{j+1}r_{B})|^{1-{\alpha}/n}} \int _{B(x_{0},2^{j+1}r_{B})}\bigl|f(z)\bigr|\,dz. $$

Moreover, by using Hölder’s inequality and the assumption (2.12) on Θ, we can deduce that

$$ \begin{aligned} &\bigl|I_{\alpha}f_{2}(x)-(I_{\alpha}f_{2})_{B}\bigr| \\ &\quad\leq C\sum_{j=2}^{\infty}\frac{1}{2^{j}} \cdot\frac {1}{|B(x_{0},2^{j+1}r_{B})|^{1-{\alpha}/n}} \biggl( \int_{B(x_{0},2^{j+1}r_{B})}\bigl|f(z)\bigr|^{p} \,dz \biggr)^{1/p}\bigl|B \bigl(x_{0},2^{j+1}r_{B}\bigr)\bigr|^{1/{p'}} \\ &\quad\leq C \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})}\times\sum_{j=2}^{\infty}\frac{1}{2^{j}} \cdot\frac{\Theta(2^{j+1}r_{B})^{1/p}}{|B(x_{0},2^{j+1}r_{B})|^{1/p-{\alpha }/n}} \\ &\quad\leq C \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})}\times\sum_{j=2}^{\infty}\frac{1}{2^{j}} \cdot\frac{(2^{j+1}r_{B})^{n/q}}{|B(x_{0},2^{j+1}r_{B})|^{1/q}} \\ &\quad\leq C \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})}. \end{aligned} $$

Therefore,

$$ II'=\frac{1}{|B(x_{0},r_{B})|} \int_{B(x_{0},r_{B})}\bigl|I_{\alpha}f_{2}(x)-(I_{\alpha }f_{2})_{B}\bigr|\,dx\leq C \|f \|_{\mathcal {L}^{p,\Theta}(\mathbb {R}^{n})}. $$

By combining the above estimates for \(I'\) and \(II'\), we are done. □

6 Partial results on two-weight problems

In the last section, we consider related problems about two-weight, weak type norm inequalities for \(I_{\alpha}\) and \([b,I_{\alpha}]\). In [21], Cruz-Uribe and Pérez considered the problem of finding sufficient conditions on a pair of weights \((u,v)\) which ensure the boundedness of the operator \(I_{\alpha}\) from \(L^{p}(v)\) to \(WL^{p}(u)\), where \(1< p<\infty\). They gave a sufficient \(A_{p}\)-type condition (see (6.1) below), and proved a two-weight, weak type \((p,p)\) inequality for \(I_{\alpha}\)(see also [22] for another, simpler proof), which solved a problem posed by Sawyer and Wheeden in [23].

Theorem 6.1

[21, 22]

Let \(0<\alpha<n\) and \(1< p<\infty\). Given a pair of weights \((u,v)\), suppose that, for some \(r>1\) and for all cubes Q,

$$ |Q |^{\alpha/n}\cdot \biggl(\frac{1}{|Q|} \int_{Q} u(x)^{r} \,dx \biggr)^{1/{(rp)}} \biggl( \frac{1}{|Q|} \int_{Q} v(x)^{-p'/p}\,dx \biggr)^{1/{p'}}\leq C< \infty. $$
(6.1)

Then the fractional integral operator \(I_{\alpha}\) satisfies the weak type \((p,p)\) inequality

$$ u \bigl( \bigl\{ x\in\mathbb {R}^{n}: \bigl|I_{\alpha}f(x) \bigr|>\sigma \bigr\} \bigr) \leq\frac{C}{\sigma^{p}} \int_{\mathbb {R}^{n}}\bigl|f(x)\bigr|^{p} v(x)\,dx, \quad\textit{for any } \sigma>0, $$
(6.2)

where C does not depend on f and \(\sigma>0\).

Moreover, in [24], Li improved this result by replacing the ‘power bump’ in (6.1) by a smaller ‘Orlicz bump’. On the other hand, in [25], Liu and Lu obtained a sufficient \(A_{p}\)-type condition for the commutator \([b,I_{\alpha}]\) to satisfy the two-weight weak type \((p,p)\) inequality, where \(1< p<\infty\). That condition is an \(A_{p}\)-type condition in the scale of Orlicz spaces (see (6.3) below).

Theorem 6.2

[25]

Let \(0<\alpha<n\), \(1< p<\infty\) and \(b\in BMO(\mathbb {R}^{n})\). Given a pair of weights \((u,v)\), suppose that, for some \(r>1\) and for all cubes Q,

$$ |Q |^{\alpha/n}\cdot \biggl(\frac{1}{|Q|} \int_{Q} u(x)^{r} \,dx \biggr)^{1/{(rp)}} \bigl\| v^{-1/p} \bigr\| _{\mathcal {A},Q}\leq C< \infty, $$
(6.3)

where \(\mathcal {A}(t)=t^{p'}(1+\log^{+}t)^{p'}\). Then the linear commutator \([b,I_{\alpha}]\) satisfies the weak type \((p,p)\) inequality

$$ u \bigl( \bigl\{ x\in\mathbb {R}^{n}: \bigl|[b,I_{\alpha}](f) (x) \bigr|>\sigma \bigr\} \bigr) \leq\frac{C}{\sigma^{p}} \int_{\mathbb {R}^{n}}\bigl|f(x)\bigr|^{p} v(x)\,dx, \quad\textit{for any } \sigma>0, $$
(6.4)

where C does not depend on f and \(\sigma>0\).

Here and in the following, all cubes are assumed to have their sides parallel to the coordinate axes, \(Q(x_{0},\ell)\) will denote the cube centered at \(x_{0}\) and has side length . For any cube \(Q(x_{0},\ell )\) and any \(\lambda>0\), we denote by λQ the cube with the same center as Q whose side length is λ times that of Q, i.e., \(\lambda Q:=Q(x_{0},\lambda\ell)\). We now extend the results mentioned above to the Morrey-type spaces associated to θ.

Theorem 6.3

Let \(0<\alpha<n\) and \(1< p<\infty\). Given a pair of weights \((u,v)\), suppose that, for some \(r>1\) and for all cubes Q, (6.1) holds. If θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1\) and \(u\in\Delta_{2}\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {M}^{p,\theta}(v,u)\) into \(W\mathcal {M}^{p,\theta}(u)\).

Theorem 6.4

Let \(0<\alpha<n\), \(1< p<\infty\) and \(b\in BMO(\mathbb {R}^{n})\). Given a pair of weights \((u,v)\), suppose that, for some \(r>1\) and for all cubes Q, (6.3) holds. If θ satisfies the \(\mathcal {D}_{\kappa}\) condition (2.8) with \(0\leq\kappa<1\) and \(u\in A_{\infty}\), then the linear commutator \([b,I_{\alpha}]\) is bounded from \(\mathcal {M}^{p,\theta}(v,u)\) into \(W\mathcal {M}^{p,\theta}(u)\).

Proof of Theorem 6.3

Let \(f\in\mathcal {M}^{p,\theta}(v,u)\) with \(1< p<\infty\). For arbitrary \(x_{0}\in\mathbb {R}^{n}\), set \(Q=Q(x_{0},\ell)\) for the cube centered at \(x_{0}\) and with the side length . Let

$$ f=f\cdot\chi_{2Q}+f\cdot\chi_{(2Q)^{c}}:=f_{1}+f_{2}, $$

where \(\chi_{2Q}\) denotes the characteristic function of \(2Q=Q(x_{0},2\ell )\). Then, for any given \(\sigma>0\), we write

$$ \begin{aligned} &\frac{1}{\theta(u(Q))^{1/p}}\sigma\cdot \bigl[u \bigl( \bigl\{ x \in Q: \bigl|I_{\alpha}(f) (x) \bigr|>\sigma \bigr\} \bigr) \bigr]^{1/p} \\ &\quad\leq\frac{1}{\theta(u(Q))^{1/p}}\sigma\cdot \bigl[u \bigl( \bigl\{ x\in Q: \bigl|I_{\alpha}(f_{1}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/p} \\ &\qquad{}+\frac{1}{\theta(u(Q))^{1/p}}\sigma\cdot \bigl[u \bigl( \bigl\{ x\in Q: \bigl|I_{\alpha}(f_{2}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/p} \\ &\quad:=K_{1}+K_{2}. \end{aligned} $$

Using Theorem 6.1, the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ and inequality (2.1) (consider cube Q instead of ball B), we get

$$ \begin{aligned} K_{1}&\leq C\cdot\frac{1}{\theta(u(Q))^{1/p}} \biggl( \int_{\mathbb {R}^{n}}\bigl|f_{1}(x)\bigr|^{p} v(x)\,dx \biggr)^{1/p} \\ &=C\cdot\frac{1}{\theta(u(Q))^{1/p}} \biggl( \int_{2Q}\bigl|f(x)\bigr|^{p} v(x)\,dx \biggr)^{1/p} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\cdot\frac{\theta (u(2Q))^{1/p}}{\theta(u(Q))^{1/p}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\cdot\frac {u(2Q)^{\kappa/p}}{u(Q)^{\kappa/p}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}. \end{aligned} $$

As for the term \(K_{2}\), using the same methods and steps as in dealing with \(I_{2}\) in Theorem 2.1, we can also obtain, for any \(x\in Q\),

$$ \bigl|I_{\alpha}(f_{2}) (x) \bigr|\leq C\sum _{j=1}^{\infty}\frac {1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int_{2^{j+1}Q}\bigl|f(y)\bigr|\,dy. $$
(6.5)

This pointwise estimate (6.5) together with Chebyshev’s inequality implies

$$ \begin{aligned} K_{2}&\leq\frac{2}{\theta(u(Q))^{1/p}}\cdot \biggl( \int_{Q} \bigl|I_{\alpha }(f_{2}) (x) \bigr|^{p}u(x)\,dx \biggr)^{1/p} \\ &\leq C\cdot\frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}} \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int _{2^{j+1}Q}\bigl|f(y)\bigr|\,dy. \end{aligned} $$

Moreover, an application of Hölder’s inequality shows that

$$ \begin{aligned} K_{2}\leq{}& C\cdot\frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}} \sum _{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \biggl( \int _{2^{j+1}Q}\bigl|f(y)\bigr|^{p}v(y)\,dy \biggr)^{1/p} \\ &{}\times \biggl( \int_{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\cdot\frac {u(Q)^{1/p}}{\theta(u(Q))^{1/p}} \sum _{j=1}^{\infty}\frac{\theta (u(2^{j+1}Q))^{1/p}}{|2^{j+1}Q|^{1-{\alpha}/n}} \times \biggl( \int_{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}}. \end{aligned} $$

For any \(j\in\mathbb {Z}^{+}\), since \(0< u(Q)< u(2^{j+1}Q)<+\infty\) when u is a weight function, by the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ with \(0\leq\kappa<1\), we can see that

$$ \frac{\theta(u(2^{j+1}Q))^{1/p}}{\theta(u(Q))^{1/p}}\leq\frac {u(2^{j+1}Q)^{\kappa/p}}{u(Q)^{\kappa/p}}. $$
(6.6)

In addition, we apply Hölder’s inequality with exponent r to get

$$ u \bigl(2^{j+1}Q \bigr)= \int_{2^{j+1}Q}u(y)\,dy \leq \bigl|2^{j+1}Q \bigr|^{1/{r'}} \biggl( \int_{2^{j+1}Q}u(y)^{r} \,dy \biggr)^{1/r}. $$
(6.7)

Hence, in view of (6.6) and (6.7) derived above, we have

$$ \begin{aligned} K_{2}\leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\sum _{j=1}^{\infty}\frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}}\cdot \frac {u(2^{j+1}Q)^{1/p}}{|2^{j+1}Q|^{1-{\alpha}/n}} \times \biggl( \int_{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\sum_{j=1}^{\infty}\frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}}\cdot\frac {|2^{j+1}Q|^{1/{(r'p)}}}{|2^{j+1}Q|^{1-{\alpha}/n}} \\ &{}\times \biggl( \int_{2^{j+1}Q}u(y)^{r} \,dy \biggr)^{1/{(rp)}} \biggl( \int _{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\times\sum_{j=1}^{\infty}\frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}}. \end{aligned} $$

The last inequality is obtained by the \(A_{p}\)-type condition (6.1) on \((u,v)\). Furthermore, since \(u\in\Delta_{2}\), we can easily check that there exists a reverse doubling constant \(D=D(u)>1\) independent of Q such that (see Lemma 4.1 in [10])

$$ u(2Q)\geq D\cdot u(Q),\quad \mbox{for any cube } Q\subset\mathbb {R}^{n}, $$

which implies that, for any \(j\in\mathbb {Z}^{+}\), \(u(2^{j+1}Q)\geq D^{j+1}\cdot u(Q)\) by iteration. Hence,

$$\begin{aligned} \sum_{j=1}^{\infty}\frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}} &\leq\sum_{j=1}^{\infty}\biggl(\frac{u(Q)}{D^{j+1}\cdot u(Q)} \biggr)^{{(1-\kappa)}/p} \\ &=\sum_{j=1}^{\infty}\biggl( \frac{1}{D^{j+1}} \biggr)^{{(1-\kappa)}/p}\leq C, \end{aligned}$$
(6.8)

where the last series is convergent since the reverse doubling constant \(D>1\) and \(0\leq\kappa<1\). This yields our desired estimate \(K_{2}\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\). Summing up the above estimates for \(K_{1}\) and \(K_{2}\), and then taking the supremum over all cubes \(Q\subset\mathbb {R}^{n}\) and all \(\sigma>0\), we finish the proof of Theorem 6.3. □

Proof of Theorem 6.4

Let \(f\in\mathcal {M}^{p,\theta}(v,u)\) with \(1< p<\infty\). For an arbitrary cube \(Q=Q(x_{0},\ell)\) in \(\mathbb {R}^{n}\), as before, we set

$$ f=f_{1}+f_{2}, \qquad f_{1}=f\cdot\chi_{2Q},\qquad f_{2}=f\cdot\chi_{(2Q)^{c}}. $$

Then, for any given \(\sigma>0\), we write

$$ \begin{aligned} &\frac{1}{\theta(u(Q))^{1/p}}\sigma\cdot \bigl[u \bigl( \bigl\{ x \in Q: \bigl|[b,I_{\alpha}](f) (x) \bigr|>\sigma \bigr\} \bigr) \bigr]^{1/p} \\ &\quad\leq\frac{1}{\theta(u(Q))^{1/p}}\sigma\cdot \bigl[u \bigl( \bigl\{ x\in Q: \bigl|[b,I_{\alpha}](f_{1}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/p} \\ &\qquad{}+\frac{1}{\theta(u(Q))^{1/p}}\sigma\cdot \bigl[u \bigl( \bigl\{ x\in Q: \bigl|[b,I_{\alpha}](f_{2}) (x) \bigr|>\sigma/2 \bigr\} \bigr) \bigr]^{1/p} \\ &\quad:=K'_{1}+K'_{2}. \end{aligned} $$

Applying Theorem 6.2, the \(\mathcal {D}_{\kappa}\) condition (2.8) of θ and inequality (2.1) (consider cube Q instead of ball B), we get

$$ \begin{aligned} K'_{1}&\leq C\cdot \frac{1}{\theta(u(Q))^{1/p}} \biggl( \int_{\mathbb {R}^{n}}\bigl|f_{1}(x)\bigr|^{p} v(x)\,dx \biggr)^{1/p} \\ &=C\cdot\frac{1}{\theta(u(Q))^{1/p}} \biggl( \int_{2Q}\bigl|f(x)\bigr|^{p} v(x)\,dx \biggr)^{1/p} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\cdot\frac{\theta (u(2Q))^{1/p}}{\theta(u(Q))^{1/p}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\cdot\frac {u(2Q)^{\kappa/p}}{u(Q)^{\kappa/p}} \\ &\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}. \end{aligned} $$

Next we estimate \(K'_{2}\). For any \(x\in Q\), from the definition of \([b,I_{\alpha}]\), we can see that

$$ \begin{aligned} \bigl|[b,I_{\alpha}](f_{2}) (x) \bigr| &\leq \bigl|b(x)-b_{Q} \bigr|\cdot \bigl|I_{\alpha}(f_{2}) (x) \bigr| + \bigl|I_{\alpha}\bigl([b_{Q}-b]f_{2} \bigr) (x) \bigr| \\ &:=\xi(x)+\eta(x). \end{aligned} $$

Consequently, we can further divide \(K'_{2}\) into two parts,

$$ \begin{aligned} K'_{2}\leq{}&\frac{1}{\theta(u(Q))^{1/p}} \sigma\cdot \bigl[u \bigl( \bigl\{ x\in Q:\xi(x)>\sigma/4 \bigr\} \bigr) \bigr]^{1/p} \\ &{}+\frac{1}{\theta(u(Q))^{1/p}}\sigma\cdot \bigl[u \bigl( \bigl\{ x\in Q:\eta (x)>\sigma/4 \bigr\} \bigr) \bigr]^{1/p} \\ :={}&K'_{3}+K'_{4}. \end{aligned} $$

For the term \(K'_{3}\), it follows from the pointwise estimate (6.5) mentioned above and Chebyshev’s inequality that

$$ \begin{aligned} K'_{3}&\leq\frac{4}{\theta(u(Q))^{1/p}} \cdot \biggl( \int_{Q} \bigl|\xi(x) \bigr|^{p}u(x)\,dx \biggr)^{1/p} \\ &\leq\frac{C}{\theta(u(Q))^{1/p}}\cdot \biggl( \int_{Q} \bigl|b(x)-b_{Q} \bigr|^{p}u(x)\,dx \biggr)^{1/p} \times \Biggl(\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int _{2^{j+1}Q}\bigl|f(y)\bigr|\,dy \Biggr) \\ &\leq C\cdot\frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}} \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int _{2^{j+1}Q}\bigl|f(y)\bigr|\,dy, \end{aligned} $$

where in the last inequality we have used the fact that Lemma 4.1(ii) still holds when B replaced by Q and u is an \(A_{\infty}\) weight. Repeating the arguments in the proof of Theorem 6.3, we can show that \(K'_{3}\leq C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\). As for the term \(K'_{4}\), we can show the following pointwise estimate in the same manner as in the proof of Theorem 2.3:

$$\begin{aligned} \eta(x)&= \bigl|I_{\alpha} \bigl([b_{Q}-b]f_{2} \bigr) (x) \bigr|\\ &\leq C\sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int_{2^{j+1}Q} \bigl|b(y)-b_{Q} \bigr|\cdot \bigl|f(y) \bigr|\,dy. \end{aligned}$$

This, together with Chebyshev’s inequality yields

$$ \begin{aligned} K'_{4}\leq{}&\frac{4}{\theta(u(Q))^{1/p}} \cdot \biggl( \int_{Q} \bigl|\eta(x) \bigr|^{p}u(x)\,dx \biggr)^{1/p} \\ \leq{}& C\cdot\frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}}\cdot \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int_{2^{j+1}Q} \bigl|b(y)-b_{Q} \bigr|\cdot \bigl|f(y) \bigr|\,dy \\ \leq{}& C\cdot\frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}}\cdot \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int_{2^{j+1}Q} \bigl|b(y)-b_{{2^{j+1}Q}} \bigr|\cdot \bigl|f(y) \bigr|\,dy \\ &{}+C\cdot\frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}}\cdot \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \int_{2^{j+1}Q} |b_{{2^{j+1}Q}}-b_{Q} |\cdot \bigl|f(y) \bigr|\,dy \\ :={}&K'_{5}+K'_{6}. \end{aligned} $$

An application of Hölder’s inequality leads to

$$ \begin{aligned} K'_{5}\leq{}& C\cdot \frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}}\cdot \sum_{j=1}^{\infty}\frac{1}{|2^{j+1}Q|^{1-{\alpha}/n}} \biggl( \int _{2^{j+1}Q} \bigl|f(y) \bigr|^{p}v(y)\,dy \biggr)^{1/p} \\ &{}\times \biggl( \int_{2^{j+1}Q} \bigl|b(y)-b_{{2^{j+1}Q}} \bigr|^{p'}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\cdot\frac {u(Q)^{1/p}}{\theta(u(Q))^{1/p}}\cdot \sum _{j=1}^{\infty}\frac{\theta(u(2^{j+1}Q))^{1/p}}{|2^{j+1}Q|^{1-{\alpha }/n}} \\ &{}\times \bigl|2^{j+1}Q \bigr|^{1/{p'}} \bigl\| (b-b_{{2^{j+1}Q}})\cdot v^{-1/p} \bigr\| _{\mathcal {C},2^{j+1}Q}, \end{aligned} $$

where \(\mathcal {C}(t)=t^{p'}\) is a Young function. For \(1< p<\infty\), we know the inverse function of \(\mathcal {C}(t)\) is \(\mathcal {C}^{-1}(t)=t^{1/{p'}}\). Observe that

$$ \mathcal {C}^{-1}(t)=t^{1/{p'}} =\frac{t^{1/{p'}}}{1+\log^{+} t}\times \bigl(1+\log^{+}t \bigr) =\mathcal {A}^{-1}(t)\cdot\mathcal {B}^{-1}(t), $$

where

$$ \mathcal {A}(t)\approx t^{p'}\bigl(1+\log^{+}t\bigr)^{p'} \quad\mbox{and}\quad \mathcal {B}(t)\approx e^{t}-1. $$

Thus, by inequality (2.4) and the unweighted version of inequality (4.4) (when \(w\equiv1\)), we have

$$\begin{aligned} \begin{aligned} \bigl\| (b-b_{{2^{j+1}Q}})\cdot v^{-1/p} \bigr\| _{\mathcal {C},2^{j+1}Q} &\leq C \|b-b_{{2^{j+1}Q}} \|_{\mathcal {B},2^{j+1}Q}\cdot \bigl\| v^{-1/p} \bigr\| _{\mathcal {A},2^{j+1}Q} \\ &\leq C\|b\|_{*}\cdot \bigl\| v^{-1/p} \bigr\| _{\mathcal {A},2^{j+1}Q}. \end{aligned} \end{aligned}$$

Since u is an \(A_{\infty}\) weight, one has \(u\in\Delta_{2}\). Moreover, in view of (6.6) and (6.7), we can deduce that

$$ \begin{aligned} K'_{5}\leq{}& C\|b\|_{*} \|f \|_{\mathcal {M}^{p,\theta}(v,u)} \sum_{j=1}^{\infty}\frac{u(2^{j+1}Q)^{\kappa/p}}{u(Q)^{\kappa/p}} \cdot \frac{u(Q)^{1/p}}{|2^{j+1}Q|^{1/p-{\alpha}/n}} \cdot \bigl\| v^{-1/p} \bigr\| _{\mathcal {A},2^{j+1}Q} \\ \leq{}& C\|b\|_{*} \|f \|_{\mathcal {M}^{p,\theta}(v,u)} \sum_{j=1}^{\infty}\frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa )}/p}} \\ &{}\times \bigl|2^{j+1}Q \bigr|^{{\alpha}/n} \biggl(\frac{1}{|2^{j+1}Q|} \int _{2^{j+1}Q}u(x)^{r} \,dx \biggr)^{1/{(rp)}} \cdot \bigl\| v^{-1/p} \bigr\| _{\mathcal {A},2^{j+1}Q} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)} \sum_{j=1}^{\infty}\frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa )}/p}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}. \end{aligned} $$

The last inequality is obtained by the \(A_{p}\)-type condition (6.3) on \((u,v)\) and the estimate (6.8). It remains to estimate the last term \(K'_{6}\). Applying Lemma 4.1(i) (use Q instead of B) and Hölder’s inequality, we get

$$ \begin{aligned} K'_{6}\leq{}& C\cdot \frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}} \sum_{j=1}^{\infty}\frac{(j+1)\|b\|_{*}}{|2^{j+1}Q|^{1-{\alpha}/n}} \int _{2^{j+1}Q}\bigl|f(y)\bigr|\,dy \\ \leq{}& C\cdot\frac{u(Q)^{1/p}}{\theta(u(Q))^{1/p}} \sum_{j=1}^{\infty}\frac{(j+1)\|b\|_{*}}{|2^{j+1}Q|^{1-{\alpha}/n}} \biggl( \int_{2^{j+1}Q} \bigl|f(y) \bigr|^{p}v(y)\,dy \biggr)^{1/p} \\ &{}\times \biggl( \int_{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\cdot\frac {u(Q)^{1/p}}{\theta(u(Q))^{1/p}} \sum _{j=1}^{\infty}(j+1)\cdot\frac{\theta (u(2^{j+1}Q))^{1/p}}{|2^{j+1}Q|^{1-{\alpha}/n}} \\ &{}\times \biggl( \int_{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}}. \end{aligned} $$

Let \(\mathcal {C}(t)\), \(\mathcal {A}(t)\) be the same as before. Obviously, \(\mathcal {C}(t)\leq\mathcal {A}(t)\) for all \(t>0\), then it is not difficult to see that, for any given cube \(Q\subset\mathbb {R}^{n}\), we have \(\|f \|_{\mathcal {C},Q}\leq \|f \|_{\mathcal {A},Q}\) by definition, which implies that condition (6.3) is stronger than condition (6.1). This fact together with (6.6) and (6.7) yields

$$ \begin{aligned} K'_{6}\leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\sum_{j=1}^{\infty}(j+1)\cdot \frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}}\cdot\frac {u(2^{j+1}Q)^{1/p}}{|2^{j+1}Q|^{1-{\alpha}/n}} \\ &{}\times \biggl( \int_{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)}\sum_{j=1}^{\infty}(j+1)\cdot \frac{u(Q)^{{(1-\kappa)}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}}\cdot\frac {|2^{j+1}Q|^{1/{(r'p)}}}{|2^{j+1}Q|^{1-{\alpha}/n}} \\ &{}\times \biggl( \int_{2^{j+1}Q}u(y)^{r} \,dy \biggr)^{1/{(rp)}} \biggl( \int _{2^{j+1}Q}v(y)^{-p'/p}\,dy \biggr)^{1/{p'}} \\ \leq{}& C \|f \|_{\mathcal {M}^{p,\theta}(v,u)} \sum_{j=1}^{\infty}(j+1) \cdot\frac{u(Q)^{{(1-\kappa )}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}}. \end{aligned} $$

Moreover, by our additional hypothesis on \(u:u\in A_{\infty}\) and inequality (2.2) with exponent \(\delta>0\) (use Q instead of B), we finally obtain

$$ \begin{aligned} \sum_{j=1}^{\infty}(j+1) \cdot\frac{u(Q)^{{(1-\kappa )}/p}}{u(2^{j+1}Q)^{{(1-\kappa)}/p}} &\leq C\sum_{j=1}^{\infty}(j+1) \cdot \biggl(\frac{|Q|}{|2^{j+1}Q|} \biggr)^{{\delta(1-\kappa)}/p} \\ &\leq C\sum_{j=1}^{\infty}(j+1)\cdot \biggl( \frac{1}{2^{(j+1)n}} \biggr)^{{\delta(1-\kappa)}/p} \\ &\leq C, \end{aligned} $$

which in turn shows that \(K'_{6}\leq C \|f \|_{\mathcal {M}^{p,\theta }(v,u)}\). Summing up all the above estimates, and then taking the supremum over all cubes \(Q\subset\mathbb {R}^{n}\) and all \(\sigma>0\), we therefore conclude the proof of Theorem 6.4. □

In particular, if we take \(\theta(x)=x^{\kappa}\) with \(0<\kappa<1\), then we immediately get the following two-weight, weak type \((p,p)\) inequalities for \(I_{\alpha}\) and \([b,I_{\alpha}]\) in the weighted Morrey spaces.

Corollary 6.1

Let \(1< p<\infty\), \(0<\kappa<1\) and \(0<\alpha<n\). Given a pair of weights \((u,v)\), suppose that, for some \(r>1\) and for all cubes Q, (6.1) holds. If \(u\in\Delta_{2}\), then the fractional integral operator \(I_{\alpha}\) is bounded from \(\mathcal {L}^{p,\kappa }(v,u)\) into \(W\mathcal {L}^{p,\kappa}(u)\).

Corollary 6.2

Let \(1< p<\infty\), \(0<\kappa<1\), \(b\in BMO(\mathbb {R}^{n})\) and \(0<\alpha <n\). Given a pair of weights \((u,v)\), suppose that, for some \(r>1\) and for all cubes Q, (6.3) holds. If \(u\in A_{\infty}\), then the linear commutator \([b,I_{\alpha}]\) is bounded from \(\mathcal {L}^{p,\kappa}(v,u)\) into \(W\mathcal {L}^{p,\kappa}(u)\).