1 Introduction

If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),g(y)\geq0\), \(f\in L^{p}( \mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\|f\|_{p}=(\int _{0}^{\infty}f^{p}(x)\, dx)^{\frac{1}{p}}>0\), and \(\|g\|_{q}>0\), then we have the following Hardy-Hilbert integral inequality [1]:

$$ \int_{0}^{\infty} \int_{0}^{\infty}\frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi }{\sin(\pi/p)}\|f\|_{p}\|g\|_{q}, $$
(1)

where, the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible. If \(a_{m},b_{n}\geq0\), \(a=\{a_{m}\}_{m=1}^{\infty}\in l^{p}\), \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{q}\), \(\|a\|_{p}=(\sum_{m=1}^{\infty }a_{m}^{p})^{\frac{1}{p}}>0\), and \(\|b\|_{q}>0\), then we have the following Hardy-Hilbert’s inequality with the same best constant \(\frac{\pi}{\sin (\pi/p)}\) [1]:

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\pi/p)}\|a \|_{p}\|b\|_{q}. $$
(2)

Inequalities (1) and (2) are important in analysis and its applications (see [15]).

Suppose that \(\mu_{i},\upsilon_{j}>0\) (\(i,j\in\mathbf{N}=\{1,2,\ldots \}\)),

$$ U_{m}:=\sum_{i=1}^{m} \mu_{i},\qquad V_{n}:=\sum_{j=1}^{n} \nu_{j}\quad (m,n\in \mathbf{N}). $$
(3)

Then we have the following inequality ([1], Theorem 321):

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{\mu_{m}^{1/q}\nu _{n}^{1/p}a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi}{\sin(\pi/p)}\|a\|_{p}\|b\|_{q}. $$
(4)

Replacing \(\mu_{m}^{1/q}a_{m}\) and \(\upsilon_{n}^{1/p}b_{n}\) by \(a_{m}\) and \(b_{n}\) in (4), respectively, we obtain an equivalent form of (4):

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac {a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}\frac {a_{m}^{p}}{\mu _{m}^{p-1}} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty} \frac {b_{n}^{q}}{\nu_{n}^{q-1}} \Biggr) ^{\frac{1}{q}}. $$
(5)

For \(\mu_{i}=\upsilon_{j}=1\) (\(i,j\in\mathbf{N}\)), both (4) and (5) reduce to (2). We call (4) and (5) Hardy-Hilbert-type inequalities.

Note

The authors of [1] did not prove that (4) is valid with the best possible constant factor.

In 1998, by introducing an independent parameter \(\lambda\in(0,1]\) Yang [6] gave an extension of (1) with the kernel \(\frac{1}{(x+y)^{\lambda}}\) for \(p=q=2\). Later, Yang [5] refined [6] by giving extensions of (1) and (2) as follows.

Assuming that \(\lambda_{1},\lambda_{2}\in\mathbf{R}\), \(\lambda _{1}+\lambda _{2}=\lambda\), \(k_{\lambda}(x,y)\) is a nonnegative homogeneous function of degree −λ with \(k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda }(t,1)t^{\lambda_{1}-1}\, dt\in\mathbf{R}_{+}\), \(\phi(x)=x^{p(1-\lambda _{1})-1}\), \(\psi(x)=x^{q(1-\lambda_{2})-1}\), \(f(x),g(y)\geq0\),

$$ f\in L_{p,\phi}(\mathbf{R}_{+})= \biggl\{ f;\|f \|_{p,\phi }:=\biggl\{ \int_{0}^{\infty}\phi(x)\bigl\vert f(x)\bigr\vert ^{p}\,dx\biggr\} ^{\frac{1}{p}}< \infty \biggr\} , $$

\(g\in L_{q,\psi}(\mathbf{R}_{+})\), \(\|f\|_{p,\phi},\|g\|_{q,\psi}>0\), we have

$$ \int_{0}^{\infty} \int_{0}^{\infty}k_{\lambda }(x,y)f(x)g(y)\,dx \,dy< k(\lambda _{1})\|f\|_{p,\phi}\|g\|_{q,\psi}, $$
(6)

where the constant factor \(k(\lambda_{1})\) is the best possible. Moreover, if \(k_{\lambda}(x,y)\) keeps finite and \(k_{\lambda}(x,y)x^{\lambda _{1}-1}(k_{\lambda}(x,y)y^{\lambda_{2}-1})\) is decreasing with respect to \(x>0\) (\(y>0\)), then for \(a_{m},b_{n}\geq0\),

$$ a\in l_{p,\phi}= \Biggl\{ a;\|a\|_{p,\phi}:=\Biggl(\sum _{n=1}^{\infty}\phi (n)|a_{n}|^{p} \Biggr)^{\frac{1}{p}}< \infty \Biggr\} , $$

\(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\psi}\), \(\|a\|_{p,\phi },\|b\|_{q,\psi }>0\), we have

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}k_{\lambda }(m,n)a_{m}b_{n}< k( \lambda_{1})\|a\|_{p,\phi}\|b\|_{q,\psi}, $$
(7)

where the constant factor \(k(\lambda_{1})\) is still the best possible.

For \(0<\lambda_{1},\lambda_{2}\leq1\) such that \(\lambda_{1}+\lambda _{2}=\lambda\), we set

$$ k_{\lambda}(x,y)=\frac{1}{(x+y)^{\lambda}}\quad \bigl((x,y)\in \mathbf{R}_{+}^{2}\bigr). $$

Then by (7) we have

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}}< B( \lambda_{1},\lambda_{2})\|a\|_{p,\phi}\|b \|_{q,\psi}, $$
(8)

where the constant \(B(\lambda_{1},\lambda_{2})\) is the best possible, and

$$ B ( u,v ) = \int_{0}^{\infty}\frac{1}{(1+t)^{u+v}}t^{u-1} \,dt \quad (u,v>0) $$

is the beta function. Clearly, for \(\lambda=1\), \(\lambda_{1}=\frac{1}{q}\), \(\lambda_{2}=\frac{1}{p}\), inequality (8) reduces to (2).

In 2015, by adding some conditions, Yang [7] gave an extension of (8) and (5) as follows:

$$\begin{aligned}& \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{(U_{m}+V_{n})^{\lambda}} \\& \quad < B(\lambda_{1},\lambda_{2}) \Biggl( \sum _{m=1}^{\infty}\frac{U_{m}^{p(1-\lambda_{1})-1}a_{m}^{p}}{\mu_{m}^{p-1}} \Biggr) ^{\frac {1}{p}} \Biggl( \sum_{n=1}^{\infty}\frac{V_{n}^{q(1-\lambda _{2})-1}b_{n}^{q}}{\nu _{n}^{q-1}} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(9)

where the constant \(B(\lambda_{1},\lambda_{2})\) is still the best possible.

Some other results including multidimensional Hilbert-type inequalities are provided by [825].

About the topic of half-discrete Hilbert-type inequalities with inhomogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1], but they did not prove that the constant factors are the best possible. However, Yang [26] gave a result with the kernel \(\frac{1}{(1+nx)^{\lambda}}\) by introducing a variable and proved that the constant factor is the best possible. In 2011, Yang [27] gave the following half-discrete Hardy-Hilbert’s inequality with the best possible constant factor \(B ( \lambda_{1},\lambda_{2} ) \):

$$ \int_{0}^{\infty}f ( x ) \Biggl[ \sum _{n=1}^{\infty}\frac {a_{n}}{ ( x+n ) ^{\lambda}} \Biggr] \,dx< B ( \lambda_{1},\lambda _{2} ) \|f\|_{p,\phi}\|a \|_{q,\psi}, $$
(10)

where, \(\lambda_{1}>0\), \(0<\lambda_{2}\leq1\), \(\lambda_{1}+\lambda _{2}=\lambda\). Zhong and Yang [17, 2833] investigated several half-discrete Hilbert-type inequalities with particular kernels. Applying weight functions, a half-discrete Hilbert-type inequality with a general homogeneous kernel of degree \(-\lambda\in \mathbf{R}\) with the best constant factor \(k ( \lambda_{1} ) \) is obtained as follows:

$$ \int_{0}^{\infty}f(x)\sum_{n=1}^{\infty}k_{\lambda }(x,n)a_{n} \,dx< k(\lambda _{1})\|f\|_{p,\phi}\|a\|_{q,\psi}, $$
(11)

which is an extension of (10) (cf. [34]). At the same time, a half-discrete Hilbert-type inequality with a general inhomogeneous kernel and the best constant factor is given by Yang [35]. In 2012-2014, Yang et al. published three books [36, 37] and [38] for building the theory of half-discrete Hilbert-type inequalities.

In this paper, by applying weight coefficients and technique of real analysis, a half-discrete Hardy-Hilbert-type inequality related to the kernel of hyperbolic secant function and the best possible constant factor is given, which is an extension of (11) for \(\lambda=0\) and a particular kernel. The equivalent forms, the operator expressions with the norm, the reverses, and some particular cases are also considered.

2 Some lemmas

In the following, we make appointment that \(\mu_{i},\nu_{j}>0\) (\(i,j\in\mathbf{N}\)), \(U_{m}\) and \(V_{n}\) are defined by (3), \(\mu(t)\) is a positive continuous function in \(\mathbf{R}_{+}=(0,\infty)\),

$$ U(x):= \int_{0}^{x}\mu(t)\,dt< \infty\quad \bigl(x\in [0, \infty )\bigr), $$

\(\nu(t):=\nu_{n}\), \(t\in(n-1,n]\) (\(n\in\mathbf{N}\)), and

$$ V(y):= \int_{0}^{y}\nu(t)\,dt\quad \bigl(y\in[0, \infty )\bigr), $$

\(p\neq0,1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\delta\in\{-1,1\}\), \(f(x),a_{n}\geq0\) (\(x\in\mathbf{R}_{+}\), \(n\in\mathbf{N}\)), \(\|f\|_{p,\Phi _{\delta}}=(\int_{0}^{\infty}\Phi_{\delta}(x)f^{p}(x)\,dx)^{\frac{1}{p}}\), \(\|a\|_{q,\Psi}=(\sum_{n=1}^{\infty}\Psi(n)b_{n}^{q})^{\frac{1}{q}}\), where

$$ \Phi_{\delta}(x):=\frac{U^{p(1-\delta\sigma)-1}(x)}{\mu ^{p-1}(x)},\qquad \Psi (n):=\frac{V_{n}^{q(1-\sigma)-1}}{\nu_{n}^{q-1}} \quad (x\in\mathbf {R}_{+},n\in \mathbf{N}). $$

Example 1

For \(\rho,\gamma,\sigma>0\), \(\alpha>-\rho\), \(\sec h(u)=\frac{2}{e^{u}+e^{-u}}\) (\(u>0\)) is called the hyperbolic secant function (cf. [39]), we set \(h(t)=\frac{\sec h(\rho t^{\gamma})}{e^{\alpha t^{\gamma}}}\) (\(t\in\mathbf{R}_{+}\)).

(i) Setting \(u=\rho t^{\gamma}\), we find

$$\begin{aligned} k(\sigma) : =& \int_{0}^{\infty}\frac{\sec h(\rho t^{\gamma })}{e^{\alpha t^{\gamma}}}t^{\sigma-1}\,dt \\ =& \frac{1}{\gamma\rho^{\sigma/\gamma}} \int_{0}^{\infty}\frac{\sec h(u)}{e^{\frac{\alpha}{\rho}u}}u^{\frac{\sigma}{\gamma}-1}\,du \\ =& \frac {2}{\gamma \rho^{\sigma/\gamma}} \int_{0}^{\infty}\frac{e^{-\frac{\alpha}{\rho} u}u^{\frac{\sigma}{\gamma}-1}}{e^{u}+e^{-u}}\,du \\ =& \frac{2}{\gamma\rho^{\sigma/\gamma}} \int_{0}^{\infty}\frac{e^{-( \frac{\alpha}{\rho}+1)u}u^{\frac{\sigma}{\gamma}-1}}{1+e^{-2u}}\,du \\ =&\frac{2}{\gamma\rho^{\sigma/\gamma}} \int_{0}^{\infty }\sum_{k=0}^{\infty}(-1)^{k}e^{-(2k+\frac{\alpha}{\rho}+1)u}u^{\frac{ \sigma}{\gamma}-1} \,du \\ =&\frac{2}{\gamma\rho^{\sigma/\gamma}} \int_{0}^{\infty }\sum_{k=0}^{\infty} \bigl[e^{-(4k+\frac{\alpha}{\rho}+1)u}-e^{-(4k+2+\frac {\alpha}{\rho}+1)u}\bigr]u^{\frac{\sigma}{\gamma}-1}\,du. \end{aligned}$$

By the Lebesgue term-by-term theorem (see [39]), setting \(v=(2k+\frac{\alpha}{\rho}+1)u\), we have

$$\begin{aligned} k(\sigma) =& \int_{0}^{\infty}\frac{\sec h(\rho t^{\gamma })}{e^{\alpha t^{\gamma}}}t^{\sigma-1}\,dt \\ =&\frac{2}{\gamma\rho^{\sigma/\gamma}}\sum_{k=0}^{\infty } \int_{0}^{\infty}\bigl[e^{-(4k+\frac{\alpha}{\rho}+1)u}-e^{-(4k+2+\frac{\alpha}{\rho}+1)u} \bigr]u^{\frac{\sigma}{\gamma}-1}\,du \\ =&\frac{2}{\gamma\rho^{\sigma/\gamma}}\sum_{k=0}^{\infty }(-1)^{k} \int_{0}^{\infty}e^{-(2k+\frac{\alpha}{\rho}+1)u}u^{\frac {\sigma }{\gamma}-1}\,du \\ =&\frac{2}{\gamma\rho^{\sigma/\gamma}}\sum_{k=0}^{\infty} \frac {(-1)^{k}}{(2k+\frac{\alpha}{\rho}+1)^{\sigma/\gamma}} \int_{0}^{\infty }e^{-v}v^{\frac{\sigma}{\gamma}-1}\,dv \\ =&\frac{2\Gamma(\frac{\sigma}{\gamma})}{\gamma(2\rho)^{\sigma /\gamma}}\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+\frac{\alpha+\rho}{2\rho})^{\sigma/\gamma}} \\ =&\frac{2\Gamma(\frac{\sigma}{\gamma})}{\gamma(2\rho)^{\sigma /\gamma}}\xi\biggl(\frac{\sigma}{\gamma},\frac{\alpha+\rho}{2\rho}\biggr)\in \mathbf {R}_{+}, \end{aligned}$$
(12)

where \(\xi(s,a):=\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(k+a)^{s}}\) (\(s,a>0\)) and

$$ \Gamma(y):= \int_{0}^{\infty}e^{-v}v^{y-1}\,dv \quad (y>0) $$

is the gamma function (see [40]).

In particular, for \(\alpha=\rho>0\) and \(\gamma=\sigma\), we have \(h(t)=\frac{\sec h(\rho t^{\sigma})}{e^{\rho t^{\sigma}}}\) and \(k(\sigma)=\frac {\ln2}{\sigma\rho}\); for \(\alpha=0\) and \(\gamma=\sigma\), we find \(h(t)=\sec h(\rho t^{\sigma})\) and \(k(\sigma)=\frac{\pi}{2\sigma\rho}\).

(ii) We have \(\frac{1}{e^{u}+e^{-u}}>0\) and \((\frac{1}{e^{u}+e^{-u}})^{\prime}=-\frac{e^{u}-e^{-u}}{(e^{u}+e^{-u})^{2}}<0\) for \(u>0\). If \(g(u)>0\) and \(g^{\prime}(u)<0\), then for \(\gamma>0\), \(g(\rho t^{\gamma })>0\), \(\frac{d}{\,dt}g (\rho t^{\gamma})=\rho\gamma t^{\gamma-1}g^{\prime}(\rho t^{\gamma})<0\); for \(y\in(n-1,n)\), \(g(V(y))>0\), \(\frac{d}{dy}g(V(y))=g^{\prime }(V(y))\nu_{n}<0\) (\(n\in\mathbf{N}\)).

If \(g_{i}(u)>0\) and \(g_{i}^{\prime}(u)<0\) (\(i=1,2\)), then we find for \(u>0\),

$$ g_{1}(u)g_{2}(u)>0,\qquad \bigl(g_{1}(u)g_{2}(u) \bigr)^{\prime}=g_{1}^{\prime }(u)g_{2}(u)+g_{1}(u)g_{2}^{\prime}(u)< 0. $$

(iii) Therefore, for \(\rho,\gamma,\sigma>0\), \(\alpha>-\rho\) (\(\alpha \geq0\)), we have \(h(t)>0\) and \(h^{\prime}(t)<0\) with \(k(\sigma)\in\mathbf {R}_{+}\), and then for \(c>0\) and \(n\in\mathbf{N}\), adding \(\sigma\leq1\), we have

$$ h\bigl(cV(y)\bigr)V^{\sigma-1}(y)>0, \qquad \frac{d}{dy}h\bigl(cV(y) \bigr)V^{\sigma-1}(y)< 0 \quad \bigl(y\in (n-1,n)\bigr). $$

Lemma 1

If \(g(t)\) (>0) is decreasing in \(\mathbf{R}_{+}\) and strictly decreasing in \([n_{0},\infty)\) (\(n_{0}\in\mathbf{N}\)) and satisfies \(\int_{0}^{\infty}g(t)\,dt\in\mathbf{R}_{+}\), then we have

$$ \int_{1}^{\infty}g(t)\,dt< \sum _{n=1}^{\infty}g(n)< \int_{0}^{\infty}g(t)\,dt. $$
(13)

Proof

Since we have

$$\begin{aligned}& \int_{n}^{n+1}g(t)\,dt \leq g(n)\leq \int_{n-1}^{n}g(t)\,dt\quad (n=1, \ldots,n_{0}), \\& \int_{n_{0}+1}^{n_{0}+2}g(t)\,dt < g(n_{0}+1)< \int_{n_{0}}^{n_{0}+1}g(t)\,dt, \end{aligned}$$

it follows that

$$ 0< \int_{1}^{n_{0}+2}g(t)\,dt< \sum _{n=1}^{n_{0}+1}g(n)< \sum_{n=1}^{n_{0}+1} \int_{n-1}^{n}g(t)\,dt= \int_{0}^{n_{0}+1}g(t)\,dt< \infty. $$

In the same way, we still have

$$ 0< \int_{n_{0}+2}^{\infty}g(t)\,dt\leq\sum _{n=n_{0}+2}^{\infty}g(n)\leq \int_{n_{0}+1}^{\infty}g(t)\,dt< \infty. $$

Hence, adding these two inequalities, we have (13). □

Lemma 2

For \(\gamma,\rho>0\), \(\alpha>-\rho\) (\(\alpha\geq 0\)), and \(0<\sigma\leq1\), define the following weight coefficients:

$$\begin{aligned}& \omega_{\delta}(\sigma,x) : =\sum_{n=1}^{\infty} \frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{U^{\delta\sigma}(x)\nu_{n}}{V_{n}^{1-\sigma}},\quad x\in\mathbf{R}_{+}, \end{aligned}$$
(14)
$$\begin{aligned}& \varpi_{\delta}(\sigma,n) : = \int_{0}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{V_{n}^{\sigma}\mu(x)}{U^{1-\delta\sigma}(x)}\,dx,\quad n\in\mathbf{N}. \end{aligned}$$
(15)

Then, we have the following inequalities:

$$\begin{aligned}& \omega_{\delta}(\sigma,x) < k(\sigma)\quad (x\in\mathbf{R}_{+}), \end{aligned}$$
(16)
$$\begin{aligned}& \varpi_{\delta}(\sigma,n) \leq k(\sigma)\quad (n\in\mathbf{N}), \end{aligned}$$
(17)

where \(k(\sigma)\) is defined in (12).

Proof

Since \(V_{n}=V(n)\) and \(V^{\prime}(t)=\nu _{n}\) for \(t\in(n-1,n)\), by Example 1(iii) and the proof of Lemma 1 we have

$$\begin{aligned}& \frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})\nu_{n}}{e^{\alpha (U^{\delta}(x)V_{n})^{\gamma}}V_{n}^{1-\sigma}} \\& \quad =\frac{\sec h(\rho (U^{\delta}(x)V(n))^{\gamma})\nu_{n}}{e^{\alpha(U^{\delta }(x)V(n))^{\gamma}}V^{1-\sigma}(n)} \\& \quad < \int_{n-1}^{n}\frac{\sec h(\rho(U^{\delta}(x)V(t))^{\gamma})}{e^{\alpha(U^{\delta}(x)V(t))^{\gamma}}}\frac{V^{\prime }(t)}{V^{1-\sigma }(t)} \,dt\quad (n\in\mathbf{N}), \\& \omega_{\delta}(\sigma,x) < \sum_{n=1}^{\infty} \int_{n-1}^{n}\frac {\sec h(\rho(U^{\delta}(x)V(t))^{\gamma})}{e^{\alpha(U^{\delta }(x)V(t))^{\gamma}}}\frac{U^{\delta\sigma}(x)V^{\prime }(t)}{V^{1-\sigma }(t)} \,dt \\& \hphantom{\omega_{\delta}(\sigma,x)} = \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V(t))^{\gamma})}{ e^{\alpha(U^{\delta}(x)V(t))^{\gamma}}}\frac{U^{\delta\sigma }(x)V^{\prime}(t)}{V^{1-\sigma}(t)} \,dt. \end{aligned}$$

Setting \(u=U^{\delta}(x)V(t)\), by (12) we find

$$\begin{aligned} \omega_{\delta}(\sigma,x) < & \int_{0}^{U^{\delta}(x)V(\infty)}\frac {\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}\frac{U^{\delta\sigma }(x)U^{-\delta}(x)}{(uU^{-\delta}(x))^{1-\sigma}} \,du \\ \leq& \int_{0}^{\infty}\frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma }}}u^{\sigma-1} \,du \\ =&k(\sigma). \end{aligned}$$

Hence, (16) follows.

Setting \(u=V_{n}U^{\delta}(x)\) in (15), we find \(du=\delta V_{n}U^{\delta-1}(x)\mu(x)\,dx\) and

$$\begin{aligned} \varpi_{\delta}(\sigma,n) =&\frac{1}{\delta} \int_{V_{n}U^{\delta }(0)}^{V_{n}U^{\delta}(\infty)}\frac{\sec h(\rho u^{\gamma })}{e^{\alpha u^{\gamma}}}\frac{V_{n}^{\sigma}V_{n}^{-1}(V_{n}^{-1}u)^{\frac {1}{\delta}-1}}{(V_{n}^{-1}u)^{\frac{1}{\delta}-\sigma}} \,du \\ =&\frac{1}{\delta} \int_{V_{n}U^{\delta}(0)}^{V_{n}U^{\delta}(\infty )}\frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}u^{\sigma-1} \,du. \end{aligned}$$

If \(\delta=1\), then

$$ \varpi_{1}(\sigma,n)= \int_{0}^{V_{n}U(\infty)}\frac{\sec h(\rho u^{\gamma })}{e^{\alpha u^{\gamma}}}u^{\sigma-1}\,du \leq \int_{0}^{\infty}\frac {\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}u^{\sigma-1}\,du; $$

if \(\delta=-1\), then

$$ \varpi_{-1}(\sigma,n)=- \int_{\infty}^{V_{n}U^{-1}(\infty)}\frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}u^{\sigma-1}\,du \leq \int_{0}^{\infty}\frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma }}} u^{\sigma-1} \,du. $$

Then by (12) we have (17). □

Remark 1

We do not need \(\sigma\leq1\) to obtain (17). If \(U(\infty)=\infty\), then we have

$$ \varpi_{\delta}(\sigma,n)=k(\sigma)\quad (n\in\mathbf{N}). $$
(18)

For example, set \(\mu(t)=\frac{1}{(1+t)^{\beta}}\) (\(t>0\); \(0\leq\beta \leq1\)). Then, for \(x\geq0\), we find

$$ U(x)= \int_{0}^{x}\frac{dt}{(1+t)^{\beta}}=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{(1+x)^{1-\beta}-1}{1-\beta},& 0\leq\beta< 1, \\ \ln(1+x), &\beta=1 \end{array}\displaystyle \right . < \infty, $$

and \(U(\infty)=\int_{0}^{\infty}\frac{dt}{(1+t)^{\beta}}=\infty\).

Lemma 3

If \(\gamma,\rho>0\), \(\alpha>-\rho\) (\(\alpha\geq0\)), \(0<\sigma \leq1\), then there exists \(n_{0}\in\mathbf{N}\) such that \(\nu _{n}\geq\nu _{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)), and \(V(\infty )=\infty\). Moreover, then

  1. (i)

    for \(x\in\mathbf{R}_{+}\), we have

    $$ k(\sigma) \bigl(1-\theta_{\delta}(\sigma,x)\bigr)< \omega_{\delta}( \sigma,x), $$
    (19)

    where \(\theta_{\delta}(\sigma,x)=O((U(x))^{\delta\sigma})\in(0,1)\);

  2. (ii)

    for any \(b>0\), we have

    $$ \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+b}}= \frac{1}{b} \biggl( \frac {1}{V_{n_{0}}^{b}}+bO(1) \biggr) . $$
    (20)

Proof

By Example 1(iii) we have

$$\begin{aligned} \omega_{\delta}(\sigma,x) =&\sum_{n=1}^{\infty} \frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{U^{\delta\sigma}(x)\nu_{n}}{V_{n}^{1-\sigma}} \\ \geq&\sum_{n=n_{0}}^{\infty} \int_{n}^{n+1}\frac{\sec h(\rho (U^{\delta }(x)V(n))^{\gamma})}{e^{\alpha(U^{\delta}(x)V(n))^{\gamma}}}\frac{U^{\delta\sigma}(x)\nu_{n+1}\,dt}{(V(n))^{1-\sigma}} \\ >&\sum_{n=n_{0}}^{\infty} \int_{n}^{n+1}\frac{\sec h(\rho(U^{\delta }(x)V(t))^{\gamma})}{e^{\alpha(U^{\delta}(x)V(t))^{\gamma}}}\frac{U^{\delta\sigma}(x)V^{\prime}(t)}{(V(t))^{1-\sigma}}\,dt \\ =& \int_{n_{0}}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V(t))^{\gamma })}{e^{\alpha(U^{\delta}(x)V(t))^{\gamma}}}\frac{U^{\delta\sigma }(x)V^{\prime}(t)}{(V(t))^{1-\sigma}} \,dt. \end{aligned}$$

Setting \(u=U^{\delta}(x)V(t)\), in view of \(V(\infty)=\infty\), by (12) we find

$$\begin{aligned}& \omega_{\delta}(\sigma,x) > \int_{U^{\delta}(x)V_{n_{0}}}^{\infty} \frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}u^{\sigma-1}\,du \\& \hphantom{\omega_{\delta}(\sigma,x)}= k(\sigma)- \int_{0}^{U^{\delta}(x)V_{n_{0}}}\frac{\sec h(\rho u^{\gamma })}{e^{\alpha u^{\gamma}}}u^{\sigma-1} \,du=k(\sigma) \bigl(1-\theta_{\delta }(\sigma,x)\bigr), \\& \theta_{\delta}(\sigma,x) : =\frac{1}{k(\sigma)} \int_{0}^{U^{\delta }(x)V_{n_{0}}}\frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}u^{\sigma-1} \,du\in(0,1). \end{aligned}$$

Since \(F(u)=\frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}\) is continuous in \((0,\infty)\) and satisfies \(F(u)\rightarrow1\) (\(u\rightarrow 0^{+}\)), \(F(u)\rightarrow0\) (\(u\rightarrow\infty\)), there exists a constant \(L>0\) such that \(F(u)\leq L\), namely, \(\frac{\sec h(\rho u^{\gamma})}{e^{\alpha u^{\gamma}}}\leq L\) (\(u\in(0,\infty)\)). Hence, we find

$$ 0< \theta_{\delta}(\sigma,x)\leq\frac{L}{k(\sigma)} \int _{0}^{U^{\delta }(x)V_{n_{0}}}u^{\sigma-1}\,du= \frac{L(U^{\delta}(x)V_{n_{0}})^{\sigma }}{k(\sigma)\sigma}, $$

and then (19) follows.

For \(b>0\), we find

$$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+b}}=\sum _{n=1}^{n_{0}}\frac {\nu _{n}}{V_{n}^{1+b}}+\sum _{n=n_{0}+1}^{\infty}\frac{\nu_{n}}{V^{1+b}(n)} \\& \hphantom{\sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+b}}} < \sum_{n=1}^{n_{0}} \frac{\nu_{n}}{V_{n}^{1+b}}+\sum_{n=n_{0}+1}^{\infty } \int_{n-1}^{n}\frac{V^{\prime}(x)}{V^{1+b}(x)}\,dx \\& \hphantom{\sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+b}}} = \sum_{n=1}^{n_{0}} \frac{\nu_{n}}{V_{n}^{1+b}}+ \int_{n_{0}}^{\infty} \frac{dV(x)}{V^{1+b}(x)}=\sum _{n=1}^{n_{0}}\frac{\nu_{n}}{V_{n}^{1+b}}+ \frac{1}{bV^{b}(n_{0})} \\& \hphantom{\sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+b}}} = \frac{1}{b} \Biggl( \frac{1}{V_{n_{0}}^{b}}+b\sum _{n=1}^{n_{0}}\frac {\nu _{n}}{V_{n}^{1+b}} \Biggr) , \\& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+b}} \geq \sum _{n=n_{0}}^{\infty} \int_{n}^{n+1}\frac{\nu_{n+1}}{V^{1+b}(n)}\,dx>\sum _{n=n_{0}}^{\infty} \int_{n}^{n+1}\frac{V^{\prime}(x)\,dx}{V^{1+b}(x)} \\& \hphantom{\sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+b}}} = \int_{n_{0}}^{\infty}\frac{dV(x)}{V^{1+b}(x)}=\frac {1}{bV^{b}(n_{0})}= \frac{1}{bV_{n_{0}}^{b}}. \end{aligned}$$

Hence, we have (20). □

Note

For example, \(\nu_{n}=\frac{1}{n^{\beta}}\) (\(n\in \mathbf{N}\); \(0\leq\beta\leq1\)) satisfies the conditions of Lemma 3 (for \(n_{0}=1\)).

3 Main results and operator expressions

Theorem 1

If \(\gamma,\rho>0\), \(\alpha>-\rho\) (\(\alpha\geq 0\)), \(0<\sigma\leq1\), \(k(\sigma)\) is defined in by (12), then for \(p>1\), \(0<\|f\|_{p,\Phi_{\delta}}, \|a\|_{q,\Psi}<\infty\), we have the following equivalent inequalities:

$$\begin{aligned}& I : =\sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n}f(x) \,dx< k(\sigma)\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
(21)
$$\begin{aligned}& J_{1} : =\sum_{n=1}^{\infty} \frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p} \\& \hphantom{J_{1}} < k(\sigma)\|f\|_{p,\Phi_{\delta}}, \end{aligned}$$
(22)
$$\begin{aligned}& J_{2} : = \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\delta\sigma }(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \hphantom{J_{2}} < k(\sigma)\|a\|_{q,\Psi}. \end{aligned}$$
(23)

Proof

By Hölder’s inequality with weight (see [41]), we have

$$\begin{aligned}& \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p} \\& \quad = \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma })}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \biggl( \frac{U^{\frac{1-\delta\sigma}{q}}(x)f(x)}{V_{n}^{\frac{1-\sigma}{p}}\mu^{\frac {1}{q}}(x)} \biggr) \biggl( \frac{V_{n}^{\frac{1-\sigma}{p}}\mu^{\frac {1}{q}}(x)}{U^{\frac{1-\delta\sigma}{q}}(x)} \biggr) \,dx \biggr] ^{p} \\& \quad \leq \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \biggl( \frac{U^{\frac {p(1-\delta \sigma)}{q}}(x)f^{p}(x)}{V_{n}^{1-\sigma}\mu^{\frac{p}{q}}(x)} \biggr) \,dx \\& \qquad {} \times \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}\frac{ V_{n}^{(1-\sigma)(p-1)}\mu(x)}{U^{1-\delta\sigma}(x)} \,dx \biggr] ^{p-1} \\& \quad = \frac{(\varpi_{\delta}(\sigma,n))^{p-1}}{V_{n}^{p\sigma-1}\nu _{n}} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \frac{U^{(1-\delta\sigma )(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}\mu^{p-1}(x)}f^{p}(x)\,dx. \end{aligned}$$
(24)

In view of (17) and the Lebesgue term-by-term integration theorem (see [42]), we find

$$\begin{aligned} J_{1} \leq&\bigl(k(\sigma)\bigr)^{\frac{1}{q}} \Biggl[ \sum _{n=1}^{\infty } \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \frac{U^{(1-\delta\sigma )(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}\mu^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{q}} \Biggl[ \int_{0}^{\infty}\sum_{n=1}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{U^{(1-\delta\sigma)(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}\mu^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{q}} \biggl[ \int_{0}^{\infty}\omega_{\delta }(\sigma,x) \frac{U^{p(1-\delta\sigma)-1}(x)}{\mu^{p-1}(x)}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$
(25)

Then by (16) we have (22).

By Hölder’s inequality (see [41]) we have

$$\begin{aligned} I =&\sum_{n=1}^{\infty} \biggl[ \frac{\nu_{n}^{\frac {1}{p}}}{V_{n}^{\frac{1}{p}-\sigma}} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] \biggl( \frac{V_{n}^{\frac{1}{p}-\sigma}a_{n}}{\nu_{n}^{\frac {1}{p}}} \biggr) \\ \leq&J_{1}\|a\|_{q,\Psi}. \end{aligned}$$
(26)

Then by (22) we have (21). On the other hand, assuming that (21) is valid, we set

$$ a_{n}:=\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac {\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p-1},\quad n\in\mathbf{N}. $$

Then we find \(J_{1}^{p}=\|a\|_{q,\Psi}^{q}\). If \(J_{1}=0\), then (22) is trivially valid; if \(J_{1}=\infty\), then (22) keeps impossible. Suppose that \(0< J_{1}<\infty\). By (21) we have

$$ \|a\|_{q,\Psi}^{q}=J_{1}^{p}=I< k(\sigma) \|f\|_{p,\Phi_{\delta }}\|a\|_{q,\Psi},\qquad \|a\|_{q,\Psi}^{q-1}=J_{1}< k( \sigma)\|f\|_{p,\Phi _{\delta}}, $$

and then (22) follows, which is equivalent to (21).

Again by Hölder’s inequality with weight we have

$$\begin{aligned}& \Biggl[ \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma })}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q} \\& \quad = \Biggl[ \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \biggl( \frac{U^{\frac{1-\delta\sigma}{q}}(x)\nu_{n}^{\frac {1}{p}}}{V_{n}^{\frac{1-\sigma}{p}}} \biggr) \biggl( \frac{V_{n}^{\frac{1-\sigma }{p}}a_{n}}{U^{\frac{1-\delta\sigma}{q}}(x)\nu_{n}^{\frac{1}{p}}} \biggr) \Biggr] ^{q} \\& \quad \leq \Biggl[ \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}\frac{ U^{(1-\delta\sigma)(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}} \Biggr] ^{q-1} \\& \qquad {}\times\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma })}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}\frac{V_{n}^{\frac {q(1-\sigma )}{p}}}{U^{1-\delta\sigma}(x)\nu_{n}^{q-1}}a_{n}^{q} \\& \quad = \frac{(\omega_{\delta}(\sigma,x))^{q-1}}{U^{q\delta\sigma -1}(x)\mu (x)}\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma })}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}\frac{V_{n}^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta\sigma}(x)\nu_{n}^{q-1}}a_{n}^{q}. \end{aligned}$$
(27)

Then by (16) and the Lebesgue term-by-term integration theorem it follows that

$$\begin{aligned} J_{2} < &\bigl(k(\sigma)\bigr)^{\frac{1}{p}} \Biggl\{ \int_{0}^{\infty}\sum_{n=1}^{\infty } \frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha (U^{\delta }(x)V_{n})^{\gamma}}}\frac{V_{n}^{(1-\sigma)(q-1)}\mu(x)}{U^{1-\delta \sigma}(x)\nu_{n}^{q-1}}a_{n}^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{p}} \Biggl\{ \sum _{n=1}^{\infty} \int _{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}} \frac{V_{n}^{(1-\sigma)(q-1)}\mu(x)}{U^{1-\delta \sigma}(x)\nu_{n}^{q-1}}a_{n}^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{p}} \Biggl\{ \sum _{n=1}^{\infty}\varpi_{\delta }(\sigma,n) \frac{V_{n}^{q(1-\sigma)-1}}{\nu_{n}^{q-1}}a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(28)

Then by (17) we have (23).

By Hölder’s inequality we have

$$\begin{aligned} I =& \int_{0}^{\infty} \biggl( \frac{U^{\frac{1}{q}-\delta\sigma }(x)}{\mu^{\frac{1}{q}}(x)}f(x) \biggr) \Biggl[ \frac{\mu^{\frac{1}{q}}(x)}{U^{\frac {1}{q}-\delta\sigma}(x)}\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n} \Biggr] \,dx \\ \leq&\|f\|_{p,\Phi_{\delta}}J_{2}. \end{aligned}$$
(29)

Then by (23) we have (21). On the other hand, assuming that (23) is valid, we set

$$ f(x):=\frac{\mu(x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum_{n=1}^{\infty } \frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q-1},\quad x\in \mathbf{R}_{+}. $$

Then we find \(J_{2}^{q}=\|f\|_{p,\Phi_{\delta}}^{p}\). If \(J_{2}=0\), then (23) is trivially valid; if \(J_{2}=\infty\), then (23) keeps impossible. Suppose that \(0< J_{2}<\infty\). By (21) we have

$$ \|f\|_{p,\Phi_{\delta}}^{p}=J_{2}^{q}=I< k(\sigma) \|f\|_{p,\Phi _{\delta }}\|a\|_{q,\Psi},\qquad \|f\|_{p,\Phi_{\delta}}^{p-1}=J_{2}< k( \sigma )\|a\|_{q,\Psi}, $$

and then (23) follows, which is equivalent to (21).

Therefore, (21), (22), and (23) are equivalent. □

Theorem 2

With the assumptions of Theorem  1, if there exists \(n_{0}\in\mathbf{N}\) such that \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)) and \(U(\infty)=V(\infty)=\infty\), then the constant factor \(k(\sigma)\) in (21), (22), and (23) is the best possible.

Proof

For \(\varepsilon\in(0,q\sigma)\), we set \(\tilde{\sigma }=\sigma-\frac{\varepsilon}{q}\) and \(\tilde{f}=\tilde{f}(x)\), \(x\in \mathbf{R}_{+}\), \(\tilde{a}=\{\tilde{a}_{n}\}_{n=1}^{\infty}\),

$$\begin{aligned}& \tilde{f}(x) =\left \{ \textstyle\begin{array}{l@{\quad}l} U^{\delta(\tilde{\sigma}+\varepsilon)-1}(x)\mu(x), &0< x^{\delta }\leq1, \\ 0, &x^{\delta}>0,\end{array}\displaystyle \right . \end{aligned}$$
(30)
$$\begin{aligned}& \tilde{a}_{n} =V_{n}^{\tilde{\sigma}-1}\nu _{n}=V_{n}^{\sigma-\frac{\varepsilon}{q}-1} \nu_{n}, \quad n\in\mathbf{N}. \end{aligned}$$
(31)

Then for \(\delta=\pm1\), since \(U(\infty)=\infty\), we find

$$ \int_{\{x>0;0< x^{\delta}\leq1\}}\frac{\mu(x)}{U^{1-\delta \varepsilon}(x)}\,dx=\frac{1}{\varepsilon}U^{\delta\varepsilon}(1). $$
(32)

By (20), (32), and (19) we obtain

$$\begin{aligned}& \|\tilde{f}\|_{p,\Phi_{\delta}}\|\tilde{a}\|_{q,\Psi} = \biggl( \int_{\{x>0;0< x^{\delta}\leq1\}}\frac{\mu(x)\,dx}{U^{1-\delta \varepsilon }(x)} \biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+\varepsilon}} \Biggr) ^{\frac{1}{q}} \\& \hphantom{\|\tilde{f}\|_{p,\Phi_{\delta}}\|\tilde{a}\|_{q,\Psi}} = \frac{1}{\varepsilon}U^{\frac{\delta\varepsilon}{p}}(1) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}, \\& \tilde{I} : = \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\tilde{a}_{n}\tilde{f}(x)\,dx \\& \hphantom{\tilde{I}} = \int_{\{x>0;0< x^{\delta}\leq1\}}\sum_{n=1}^{\infty} \frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{V_{n}^{\tilde{\sigma}-1}\nu_{n}\mu(x)}{U^{1-\delta (\tilde{\sigma}+\varepsilon)}(x)}\,dx \\& \hphantom{\tilde{I}} = \int_{\{x>0;0< x^{\delta}\leq1\}}\omega_{\delta}(\tilde {\sigma},x)\frac{\mu(x)}{U^{1-\delta\varepsilon}(x)}\,dx \\& \hphantom{\tilde{I}} \geq k(\tilde{\sigma}) \int_{\{x>0;0< x^{\delta}\leq1\}}\bigl(1-\theta _{\delta}(\tilde{\sigma},x) \bigr)\frac{\mu(x)}{U^{1-\delta \varepsilon}(x)}\,dx \\& \hphantom{\tilde{I}} = k(\tilde{\sigma}) \int_{\{x>0;0< x^{\delta}\leq 1\}}\bigl(1-O\bigl(\bigl(U(x)\bigr)^{\delta(\sigma-\frac{\varepsilon}{q})}\bigr) \bigr)\frac{\mu (x)}{U^{1-\delta\varepsilon}(x)}\,dx \\& \hphantom{\tilde{I}} = k(\tilde{\sigma})\biggl[ \int_{\{x>0;0< x^{\delta}\leq1\}}\frac {\mu (x)}{U^{1-\delta\varepsilon}(x)}\,dx - \int_{\{x>0;0< x^{\delta}\leq1\}}O\biggl(\frac{\mu(x)}{U^{1-\delta (\sigma+\frac{\varepsilon}{p})}(x)}\biggr)\,dx\biggr] \\& \hphantom{\tilde{I}} = \frac{1}{\varepsilon}k\biggl(\sigma-\frac{\varepsilon}{q}\biggr) \bigl(U^{\delta \varepsilon}(1)-\varepsilon O(1)\bigr). \end{aligned}$$
(33)

If there exists a positive constant \(K\leq k(\sigma)\) such that (21) is valid when replacing \(k(\sigma)\) by K, then, in particular, by the Lebesgue term-by-term integration theorem we have \(\varepsilon \tilde{I}<\varepsilon K\|\tilde{f}\|_{p,\Phi_{\delta}}\|\tilde {a}\|_{q,\Psi }\), namely,

$$ k\biggl(\sigma-\frac{\varepsilon}{q}\biggr) \bigl(U^{\delta\varepsilon}(1)-\varepsilon O(1)\bigr)< K\cdot U^{\frac{\delta\varepsilon}{p}}(1) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}. $$

It follows that \(k(\sigma)\leq K\) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k(\sigma)\) is the best possible constant factor of (21).

The constant factor \(k(\sigma)\) in (22) ((23)) is still the best possible. Otherwise, we would reach a contradiction by (26) ((29)) that the constant factor in (21) is not the best possible. □

For \(p>1\), we find \(\Psi^{1-p}(n)=\frac{\nu_{n}}{V_{n}^{1-p\sigma}}\) (\(n\in\mathbf{N}\)), \(\Phi _{\delta}^{1-q}(x)=\frac{\mu(x)}{U^{1-q\delta\sigma}(x)}\) (\(x\in \mathbf{R}_{+}\)) and define the following real normed spaces:

$$\begin{aligned}& L_{p,\Phi_{\delta}}(\mathbf{R}_{+}) = \bigl\{ f;f=f(x),x\in \mathbf{R}_{+},\|f\|_{p,\Phi_{\delta}}< \infty\bigr\} , \\& l_{q,\Psi} = \bigl\{ a;a=\{a_{n}\}_{n=1}^{\infty}, \|a\|_{q,\Psi}< \infty\bigr\} , \\& L_{q,\Phi_{\delta}^{1-q}}(\mathbf{R}_{+}) = \bigl\{ h;h=h(x),x\in\mathbf {R}_{+},\|h\|_{q,\Phi_{\delta}^{1-q}}< \infty\bigr\} , \\& l_{p,\Psi^{1-p}} = \bigl\{ c;c=\{c_{n}\}_{n=1}^{\infty}, \|c\|_{p,\Psi ^{1-p}}< \infty\bigr\} . \end{aligned}$$

Assuming that \(f\in L_{p,\Phi_{\delta}}(\mathbf{R}_{+}) \) and setting

$$ c=\{c_{n}\}_{n=1}^{\infty},\qquad c_{n}:= \int_{0}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}f(x)\,dx, \quad n\in\mathbf{N}, $$

we can rewrite (22) as \(\|c\|_{p,\Psi^{1-p}}< k(\sigma )\|f\|_{p,\Phi _{\delta}}<\infty\), namely, \(c\in l_{p,\Psi^{1-p}}\).

Definition 1

Define a half-discrete Hardy-Hilbert-type operator \(T_{1}:L_{p,\Phi_{\delta}}(\mathbf{R}_{+})\rightarrow l_{p,\Psi ^{1-p}}\) as follows: For any \(f\in L_{p,\Phi_{\delta}}(\mathbf{R}_{+})\), the exists a unique representation \(T_{1}f=c\in l_{p,\Psi^{1-p}}\). We define the formal inner product of \(T_{1}f\) and \(a=\{a_{n}\}_{n=1}^{\infty}\in l_{q,\Psi}\) as follows:

$$ (T_{1}f,a):=\sum_{n=1}^{\infty} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] a_{n}. $$
(34)

Then we can rewrite (21) and (22) as follows:

$$\begin{aligned}& (T_{1}f,a) < k(\sigma)\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
(35)
$$\begin{aligned}& \|T_{1}f\|_{p,\Psi^{1-p}} < k(\sigma)\|f\|_{p,\Phi_{\delta}}. \end{aligned}$$
(36)

Define the norm of operator \(T_{1}\) as follows:

$$ \|T_{1}\|:=\sup_{f(\neq\theta)\in L_{p,\Phi_{\delta}}(\mathbf {R}_{+})}\frac{\|T_{1}f\|_{p,\Psi^{1-p}}}{\|f\|_{p,\Phi_{\delta}}}. $$

Then by (36) it follows that \(\|T_{1}\|\leq k(\sigma)\). Since by Theorem 2 the constant factor in (36) is the best possible, we have

$$ \|T_{1}\|=k(\sigma)=\frac{2\Gamma(\frac{\sigma}{\gamma})}{\gamma (2\rho )^{\sigma/\gamma}}\xi\biggl(\frac{\sigma}{\gamma}, \frac{\alpha+\rho }{2\rho}\biggr). $$
(37)

Assuming that \(a=\{a_{n}\}_{n=1}^{\infty}\in l_{q,\Psi}\) and setting

$$ h(x):=\sum_{n=1}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n}, \quad x\in\mathbf{R}_{+}, $$

we can rewrite (23) as \(\|h\|_{q,\Phi_{\delta}^{1-q}}< k(\sigma )\|a\|_{q,\Psi}<\infty\), namely, \(h\in L_{q,\Phi_{\delta }^{1-q}}(\mathbf{R}_{+})\).

Definition 2

Define a half-discrete Hardy-Hilbert-type operator \(T_{2}:l_{q,\Psi}\rightarrow L_{q,\Phi_{\delta}^{1-q}}(\mathbf {R}_{+})\) as follows: For any \(a=\{a_{n}\}_{n=1}^{\infty}\in l_{q,\Psi}\), there exists a unique representation \(T_{2}a=h\in L_{q,\Phi_{\delta}^{1-q}}(\mathbf {R}_{+})\). We define the formal inner product of \(T_{2}a\) and \(f\in L_{p,\Phi _{\delta}}(\mathbf{R}_{+})\) as follows:

$$ (T_{2}a,f):= \int_{0}^{\infty} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}a_{n} \Biggr] f(x)\,dx. $$
(38)

Then we can rewrite (21) and (23) as follows:

$$\begin{aligned}& (T_{2}a,f) < k(\sigma)\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
(39)
$$\begin{aligned}& \|T_{2}a\|_{q,\Phi_{\delta}^{1-q}} < k(\sigma)\|a\|_{q,\Psi}. \end{aligned}$$
(40)

Define the norm of operator \(T_{2}\) as follows:

$$ \|T_{2}\|:=\sup_{a(\neq\theta)\in l_{q,\Psi}}\frac{\|T_{2}a\|_{q,\Phi _{\delta}^{1-q}}}{\|a\|_{q,\Psi}}. $$

Then by (40) we find \(\|T_{2}\|\leq k(\sigma)\). Since by Theorem 2 the constant factor in (40) is the best possible, we have

$$ \|T_{2}\|=k(\sigma)=\frac{2\Gamma(\frac{\sigma}{\gamma})}{\gamma (2\rho )^{\sigma/\gamma}}\xi\biggl(\frac{\sigma}{\gamma}, \frac{\alpha+\rho }{2\rho}\biggr)=\|T_{1}\|. $$
(41)

4 Some equivalent reverse inequalities

In the following, we also set

$$ \widetilde{\Phi}_{\delta}(x):=\bigl(1-\theta_{\delta}(\sigma,x) \bigr)\frac{U^{p(1-\delta\sigma)-1}(x)}{\mu^{p-1}(x)} \quad (x\in\mathbf{R}_{+}). $$

For \(0< p<1\) or \(p<0\), we still use the formal symbols \(\|f\|_{p,\Phi_{\delta}}\), \(\|f\|_{p,\widetilde{\Phi}_{\delta}}\), and \(\|a\|_{q,\Psi}\).

Theorem 3

If \(\gamma,\rho>0\), \(\alpha>-\rho\) (\(\alpha\geq 0\)), \(0<\sigma\leq1\), \(k(\sigma)\) is defined in (12), there exists \(n_{0}\in\mathbf{N}\) such that \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)), and \(U(\infty)=V(\infty)=\infty\), then for \(p<0\), \(0<\|f\|_{p,\Phi_{\delta}}, \|a\|_{q,\Psi}<\infty \), we have the following equivalent inequalities with the best possible constant factor \(k(\sigma)\):

$$\begin{aligned}& I = \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n}f(x) \,dx>k(\sigma)\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
(42)
$$\begin{aligned}& J_{1} = \sum_{n=1}^{\infty} \frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p}>k(\sigma )\|f\|_{p,\Phi_{\delta}}, \end{aligned}$$
(43)
$$\begin{aligned}& J_{2} = \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\delta\sigma }(x)} \Biggl[ \sum_{n=1}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \hphantom{J_{2}} > k(\sigma)\|a\|_{q,\Psi}. \end{aligned}$$
(44)

Proof

By the reverse Hölder inequality with weight (see [41]), since \(p<0\), similarly as obtaining (24) and (25), we have

$$\begin{aligned}& \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p} \\& \quad \leq \frac{(\varpi_{\delta}(\sigma,n))^{p-1}}{V_{n}^{p\sigma -1}\nu_{n}} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \frac{U^{(1-\delta\sigma )(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}\mu^{p-1}(x)}f^{p}(x)\,dx. \end{aligned}$$

Then by (18) and the Lebesgue term-by-term integration theorem it follows that

$$\begin{aligned} J_{1} \geq&\bigl(k(\sigma)\bigr)^{\frac{1}{q}} \Biggl[ \sum _{n=1}^{\infty } \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \frac{U^{(1-\delta\sigma )(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}\mu^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{q}} \biggl[ \int_{0}^{\infty}\omega_{\delta }(\sigma,x) \frac{U^{p(1-\delta\sigma)-1}(x)}{\mu^{p-1}(x)}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$

Then by (16) we have (43).

By the reverse Hölder inequality we have

$$\begin{aligned} I =&\sum_{n=1}^{\infty} \biggl[ \frac{\nu_{n}^{\frac {1}{p}}}{V_{n}^{\frac{1}{p}-\sigma}} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] \biggl( \frac{V_{n}^{\frac{1}{p}-\sigma}a_{n}}{\nu_{n}^{\frac {1}{p}}} \biggr) \\ \geq&J_{1}\|a\|_{q,\Psi}. \end{aligned}$$
(45)

Then by (43) we have (42). On the other hand, assuming that (42) is valid, we set \(a_{n}\) as in Theorem 1. Then we find \(J_{1}^{p}=\|a\|_{q,\Psi}^{q}\). If \(J_{1}=\infty\), then (43) is trivially valid; if \(J_{1}=0\), then (43) keeps impossible. Suppose that \(0< J_{1}<\infty\). By (42) it follows that

$$\begin{aligned}& \|a\|_{q,\Psi}^{q} = J_{1}^{p}=I>k( \sigma)\|f\|_{p,\Phi_{\delta }}\|a\|_{q,\Psi}, \\& \|a\|_{q,\Psi}^{q-1} = J_{1}>k(\sigma)\|f \|_{p,\Phi_{\delta}}, \end{aligned}$$

and then (43) follows, which is equivalent to (42).

Still by the reverse Hölder inequality with weight, since \(0< q<1\), similarly as obtaining (27) and (28), we have

$$\begin{aligned}& \Biggl[ \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma })}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q} \\& \quad \geq \frac{(\omega_{\delta}(\sigma,x))^{q-1}}{U^{q\delta\sigma -1}(x)\mu(x)}\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}\frac{ V_{n}^{(1-\sigma)(q-1)}\mu(x)}{U^{1-\delta\sigma}(x)\nu_{n}^{q-1}}a_{n}^{q}. \end{aligned}$$

Then by (16) and the Lebesgue term-by-term integration theorem it follows that

$$\begin{aligned} J_{2} >&\bigl(k(\sigma)\bigr)^{\frac{1}{p}} \Biggl\{ \int_{0}^{\infty }\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma })}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}\frac{V_{n}^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta\sigma}(x)\nu_{n}^{q-1}}a_{n}^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{p}} \Biggl\{ \sum _{n=1}^{\infty}\varpi_{\delta }(\sigma,n) \frac{V_{n}^{q(1-\sigma)-1}}{\nu_{n}^{q-1}}a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$

Then by (18) we have (44).

By the reverse Hölder inequality we have

$$\begin{aligned} I =& \int_{0}^{\infty} \biggl( \frac{U^{\frac{1}{q}-\delta\sigma }(x)}{\mu^{\frac{1}{q}}(x)}f(x) \biggr) \Biggl[ \frac{\mu^{\frac{1}{q}}(x)}{U^{\frac {1}{q}-\delta\sigma}(x)}\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n} \Biggr] \,dx \\ \geq&\|f\|_{p,\Phi_{\delta}}J_{2}. \end{aligned}$$
(46)

Then by (44) we have (42). On the other hand, assuming that (44) is valid, we set \(f(x)\) as in Theorem 1. Then we find \(J_{2}^{q}=\|f\|_{p,\Phi_{\delta}}^{p}\). If \(J_{2}=\infty\), then (44) is trivially valid; if \(J_{2}=0\), then (44) keeps impossible. Suppose that \(0< J_{2}<\infty\). By (42) it follows that

$$ \|f\|_{p,\Phi_{\delta}}^{p}=J_{2}^{q}=I>k(\sigma) \|f\|_{p,\Phi _{\delta }}\|a\|_{q,\Psi},\qquad \|f\|_{p,\Phi_{\delta}}^{p-1}=J_{2}>k( \sigma )\|a\|_{q,\Psi}, $$

and then (44) follows, which is equivalent to (42).

Therefore, inequalities (42), (43), and (44) are equivalent.

For \(\varepsilon\in(0,q\sigma)\), we set \(\tilde{\sigma}=\sigma- \frac{\varepsilon}{q}\) and \(\tilde{f}=\tilde{f}(x)\), \(x\in \mathbf{R}_{+}\), \(\tilde{ a}=\{\tilde{a}_{n}\}_{n=1}^{\infty}\),

$$\begin{aligned}& \tilde{f}(x) = \left \{ \textstyle\begin{array}{l@{\quad}l} U^{\delta(\tilde{\sigma}+\varepsilon)-1}(x)\mu(x), &0< x^{\delta }\leq1, \\ 0, &x^{\delta}>0,\end{array}\displaystyle \right . \\& \tilde{a}_{n} = \widetilde{V}_{n}^{\tilde{\sigma}-1} \nu_{n}=\widetilde{V}_{n}^{\sigma-\frac{\varepsilon}{q}-1} \nu_{n},\quad n\in \mathbf{N}. \end{aligned}$$

By (20), (32), and (16) we obtain

$$\begin{aligned}& \|\tilde{f}\|_{p,\Phi_{\delta}}\|\tilde{a}\|_{q,\Psi}=\frac {1}{\varepsilon}U^{\frac{\delta\varepsilon}{p}}(1) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}, \\& \tilde{I} = \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\tilde{a}_{n}\tilde{f}(x)\,dx \\& \hphantom{\tilde{I}} = \int_{\{x>0;0< x^{\delta}\leq1\}}\omega_{\delta}(\tilde {\sigma},x)\frac{\mu(x)}{U^{1-\delta\varepsilon}(x)}\,dx \\& \hphantom{\tilde{I}} \leq k(\tilde{\sigma}) \int_{\{x>0;0< x^{\delta}\leq1\}}\frac {\mu(x)}{U^{1-\delta\varepsilon}(x)}\,dx=\frac{1}{\varepsilon}k\biggl( \sigma-\frac{ \varepsilon}{q}\biggr)U^{\delta\varepsilon}(1). \end{aligned}$$

If there exists a positive constant \(K\geq k(\sigma)\) such that (42) is valid when replacing \(k(\sigma)\) by K, then, in particular, we have \(\varepsilon\tilde{I}>\varepsilon K\|\tilde{f}\|_{p,\Phi _{\delta }}\|\tilde{a}\|_{q,\Psi}\), namely,

$$ k\biggl(\sigma-\frac{\varepsilon}{q}\biggr)U^{\delta\varepsilon}(1)>K\cdot U^{\frac{\delta\varepsilon}{p}}(1) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}. $$

It follows that \(k(\sigma)\geq K\) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k(\sigma)\) is the best possible constant factor of (42).

The constant factor \(k(\sigma)\) in (43) ((44)) is still the best possible. Otherwise, we would reach a contradiction by (45) ((46)) that the constant factor in (42) is not the best possible. □

Theorem 4

With the assumptions of Theorem  3, if \(0< p<1\), \(0<\|f\|_{p,\Phi_{\delta}}\), and \(\|a\|_{q,\Psi}<\infty\), then we have the following equivalent inequalities with the best possible constant factor \(k(\sigma)\):

$$\begin{aligned}& I = \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n}f(x) \,dx>k(\sigma)\|f\|_{p,\widetilde{\Phi}_{\delta }}\|a\|_{q,\Psi}, \end{aligned}$$
(47)
$$\begin{aligned}& J_{1} = \sum_{n=1}^{\infty} \frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p}>k(\sigma )\|f\|_{p,\widetilde{\Phi}_{\delta}}, \end{aligned}$$
(48)
$$\begin{aligned}& J : = \Biggl\{ \int_{0}^{\infty}\frac{(1-\theta_{\delta}(\sigma ,x))^{1-q}\mu(x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \hphantom{J} > k(\sigma)\|a\|_{q,\Psi}. \end{aligned}$$
(49)

Proof

By the reverse Hölder inequality with weight, since \(0< p<1\), similarly as obtaining (24) and (25), we have

$$\begin{aligned}& \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p} \\& \quad \geq \frac{(\varpi_{\delta}(\sigma,n))^{p-1}}{V_{n}^{p\sigma -1}\nu_{n}} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \frac{U^{(1-\delta\sigma )(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}\mu^{p-1}(x)}f^{p}(x)\,dx. \end{aligned}$$

In view of (18) and the Lebesgue term-by-term integration theorem, we find

$$\begin{aligned} J_{1} \geq&\bigl(k(\sigma)\bigr)^{\frac{1}{q}} \Biggl[ \sum _{n=1}^{\infty } \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}} \frac{U^{(1-\delta\sigma )(p-1)}(x)\nu_{n}}{V_{n}^{1-\sigma}\mu^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{q}} \biggl[ \int_{0}^{\infty}\omega_{\delta }(\sigma,x) \frac{U^{p(1-\delta\sigma)-1}(x)}{\mu^{p-1}(x)}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$

Then by (19) we have (48).

By the reverse Hölder inequality we have

$$\begin{aligned} I =&\sum_{n=1}^{\infty} \biggl[ \frac{\nu_{n}^{\frac {1}{p}}}{V_{n}^{\frac{1}{p}-\sigma}} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] \biggl( \frac{V_{n}^{\frac{1}{p}-\sigma}a_{n}}{\nu_{n}^{\frac {1}{p}}} \biggr) \\ \geq&J_{1}\|a\|_{q,\Psi}. \end{aligned}$$
(50)

Then by (48) we have (47). On the other hand, assuming that (47) is valid, we set \(a_{n}\) as in Theorem 1. Then we find \(J_{1}^{p}=\|a\|_{q,\Psi}^{q}\). If \(J_{1}=\infty\), then (48) is trivially valid; if \(J_{1}=0\), then (48) keeps impossible. Suppose that \(0< J_{1}<\infty\). By (47) it follows that

$$ \|a\|_{q,\Psi}^{q}=J_{1}^{p}=I>k(\sigma) \|f\|_{p,\widetilde{\Phi }_{\delta }}\|a\|_{q,\Psi},\qquad \|a\|_{q,\Psi}^{q-1}=J_{1}>k( \sigma )\|f\|_{p,\widetilde{\Phi}_{\delta}}, $$

and then (48) follows, which is equivalent to (47).

Again by the reverse Hölder inequality with weight, since \(q<0\), we have

$$\begin{aligned}& \Biggl[ \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma })}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q} \\& \quad \leq \frac{(\omega_{\delta}(\sigma,x))^{q-1}}{U^{q\delta\sigma -1}(x)\mu(x)}\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta}(x)V_{n})^{\gamma}}}\frac{ V_{n}^{(1-\sigma)(q-1)}\mu(x)}{U^{1-\delta\sigma}(x)\nu_{n}^{q-1}}a_{n}^{q}. \end{aligned}$$

Then by (19) and the Lebesgue term-by-term integration theorem it follows that

$$\begin{aligned} J >&\bigl(k(\sigma)\bigr)^{\frac{1}{p}} \Biggl\{ \int_{0}^{\infty}\sum_{n=1}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{V_{n}^{(1-\sigma)(q-1)}\mu(x)}{U^{1-\delta \sigma}(x)\nu_{n}^{q-1}}a_{n}^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\ =&\bigl(k(\sigma)\bigr)^{\frac{1}{p}} \Biggl\{ \sum _{n=1}^{\infty}\varpi_{\delta }(\sigma,n) \frac{V_{n}^{q(1-\sigma)-1}}{\nu_{n}^{q-1}}a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$

Then by (18) we have (49).

By the reverse Hölder inequality we have

$$\begin{aligned} I =& \int_{0}^{\infty} \biggl[ \bigl(1-\theta_{\delta}( \sigma,x)\bigr)^{\frac {1}{p}}\frac{U^{\frac{1}{q}-\delta\sigma}(x)}{\mu^{\frac {1}{q}}(x)}f(x) \biggr] \\ &{}\times \Biggl[ \frac{(1-\theta_{\delta}(\sigma,x))^{\frac{-1}{p}}\mu ^{\frac{1}{q}}(x)}{U^{\frac{1}{q}-\delta\sigma}(x)}\sum_{n=1}^{\infty } \frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}a_{n} \Biggr] \,dx \\ \geq&\|f\|_{p,\widetilde{\Phi }_{\delta }}J. \end{aligned}$$
(51)

Then by (49) we have (47). On the other hand, assuming that (47) is valid, we set \(f(x)\) as in Theorem 1. Then we find \(J^{q}=\|f\|_{p,\widetilde{\Phi}_{\delta}}^{p}\). If \(J=\infty\), then (49) is trivially valid; if \(J=0\), then (49) keeps impossible. Suppose that \(0< J<\infty\). By (47) it follows that

$$ \|f\|_{p,\widetilde{\Phi}_{\delta}}^{p}=J^{q}=I>k(\sigma)\|f \|_{p,\widetilde{\Phi}_{\delta}}\|a\|_{q,\Psi},\qquad \|f\|_{p,\widetilde{\Phi} _{\delta}}^{p-1}=J>k( \sigma)\|a\|_{q,\Psi}, $$

and then (49) follows, which is equivalent to (47).

Therefore, inequalities (47), (48), and (49) are equivalent.

For \(\varepsilon\in(0,p\sigma)\), we set \(\tilde{\sigma}=\sigma+ \frac{\varepsilon}{p}\) and \(\tilde{f}=\tilde{f}(x)\), \(x\in \mathbf{R}_{+}\), \(\tilde{a}=\{\tilde{a}_{n}\}_{n=1}^{\infty}\),

$$\begin{aligned}& \tilde{f}(x) = \left \{ \textstyle\begin{array}{l@{\quad}l} U^{\delta\tilde{\sigma}-1}(x)\mu(x),& 0< x^{\delta}\leq1, \\ 0,& x^{\delta}>0,\end{array}\displaystyle \right . \\& \tilde{a}_{n} = \widetilde{V}_{n}^{\tilde{\sigma}-\varepsilon -1} \nu_{n}=\widetilde{V}_{n}^{\sigma-\frac{\varepsilon}{q}-1}\nu _{n}, \quad n\in\mathbf{N}. \end{aligned}$$

By (19), (20), and (32) we obtain

$$\begin{aligned}& \|\tilde{f}\|_{p,\widetilde{\Phi}_{\delta}}\|\tilde {a}\|_{q,\Psi}= \biggl[ \int_{\{x>0;0< x^{\delta}\leq1\}}\bigl(1-O\bigl(\bigl(U(x)\bigr)^{\delta\sigma }\bigr) \bigr)\frac{\mu(x)\,dx}{U^{1-\delta\varepsilon}(x)} \biggr] ^{\frac{1}{p}} \Biggl( \sum _{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1+\varepsilon }} \Biggr) ^{\frac{1}{q}} \\& \hphantom{\|\tilde{f}\|_{p,\widetilde{\Phi}_{\delta}}\|\tilde {a}\|_{q,\Psi}}=\frac{1}{\varepsilon} \bigl( U^{\delta \varepsilon }(1)-\varepsilon O(1) \bigr) ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}, \\& \tilde{I} = \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\tilde{a}_{n}\tilde{f}(x)\,dx \\& \hphantom{\tilde{I}} = \sum_{n=1}^{\infty} \biggl( \int_{\{x>0;0< x^{\delta}\leq1\}}\frac {\sec h(\rho(U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{V_{n}^{\tilde{\sigma}}\mu (x)}{U^{1-\delta \tilde{\sigma}}(x)}\,dx \biggr) \frac{\nu_{n}}{V_{n}^{1+\varepsilon}} \\& \hphantom{\tilde{I}} \leq \sum_{n=1}^{\infty} \biggl( \int_{0}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\gamma})}{e^{\alpha(U^{\delta }(x)V_{n})^{\gamma}}}\frac{V_{n}^{\tilde{\sigma}}\mu(x)}{U^{1-\delta\tilde{\sigma }}(x)}\,dx \biggr) \frac{\nu_{n}}{V_{n}^{1+\varepsilon}} \\& \hphantom{\tilde{I}} = \sum_{n=1}^{\infty} \varpi_{\delta}(\tilde{\sigma},n)\frac {\nu_{n}}{V_{n}^{1+\varepsilon}}=k(\tilde{\sigma})\sum _{n=1}^{\infty }\frac{\nu_{n}}{V_{n}^{1+\varepsilon}} \\& \hphantom{\tilde{I}} = \frac{1}{\varepsilon}k\biggl(\sigma+\frac{\varepsilon}{p}\biggr) \biggl( \frac {1}{V_{n_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) . \end{aligned}$$

If there exists a positive constant \(K\geq k(\sigma)\) such that (42) is valid when replacing \(k(\sigma)\) by K, then, in particular, we have \(\varepsilon\tilde{I}>\varepsilon K\|\tilde{f}\|_{p,\widetilde {\Phi}_{\delta}}\|\tilde{a}\|_{q,\Psi}\), namely,

$$ k\biggl(\sigma+\frac{\varepsilon}{p}\biggr) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon }}+ \varepsilon O(1) \biggr) >K \bigl( U^{\delta\varepsilon}(1)-\varepsilon O(1) \bigr) ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}. $$

It follows that \(k(\sigma)\geq K\) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k(\sigma)\) is the best possible constant factor of (47).

The constant factor \(k(\sigma)\) in (48) ((49)) is still the best possible. Otherwise, we would reach a contradiction by (50) ((51)) that the constant factor in (47) is not the best possible. □

5 Some corollaries

For \(\delta=1\) in Theorems 2-4, we have the following inequalities with inhomogeneous kernel.

Corollary 1

If \(\gamma,\rho>0\), \(\alpha>\rho\) (\(\alpha\geq 0\)), \(0<\sigma\leq1\), \(k(\sigma)\) is indicated by (12), there exists \(n_{0}\in\mathbf{N}\) such that \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)), and \(U(\infty)=V(\infty)=\infty\), then

  1. (i)

    for \(p>1\), \(0<\|f\|_{p,\Phi_{1}}\), \(\|a\|_{q,\Psi}<\infty\), we have the following equivalent inequalities:

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho (U(x)V_{n})^{\gamma})}{e^{\alpha(U(x)V_{n})^{\gamma}}}a_{n}f(x) \,dx< k(\sigma)\|f\|_{p,\Phi_{1}}\|a\|_{q,\Psi}, \end{aligned}$$
    (52)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U(x)V_{n})^{\gamma})}{e^{\alpha (U(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p}< k(\sigma)\|f\|_{p,\Phi_{1}}, \end{aligned}$$
    (53)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho(U(x)V_{n})^{\gamma})}{e^{\alpha (U(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac {1}{q}}< k(\sigma )\|a \|_{q,\Psi}; \end{aligned}$$
    (54)
  2. (ii)

    for \(p<0\), \(0<\|f\|_{p,\Phi_{1}}\), and \(\|a\|_{q,\Psi }<\infty\), we have the following equivalent inequalities:

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho (U(x)V_{n})^{\gamma })}{e^{\alpha(U(x)V_{n})^{\gamma}}}a_{n}f(x) \,dx>k(\sigma)\|f\|_{p,\Phi _{1}}\|a\|_{q,\Psi}, \end{aligned}$$
    (55)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U(x)V_{n})^{\gamma})}{e^{\alpha (U(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p}>k(\sigma)\|f\|_{p,\Phi_{1}}, \end{aligned}$$
    (56)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho(U(x)V_{n})^{\gamma})}{e^{\alpha (U(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac {1}{q}}>k(\sigma )\|a \|_{q,\Psi}; \end{aligned}$$
    (57)
  3. (iii)

    for \(0< p<1\), \(0<\|f\|_{p,\Phi_{1}}\), and \(\|a\|_{q,\Psi }<\infty\), we have the following equivalent inequalities:

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho (U(x)V_{n})^{\gamma})}{e^{\alpha(U(x)V_{n})^{\gamma}}}a_{n}f(x) \,dx>k(\sigma)\|f\|_{p,\widetilde{\Phi}_{1}}\|a\|_{q,\Psi}, \end{aligned}$$
    (58)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U(x)V_{n})^{\gamma})}{e^{\alpha (U(x)V_{n})^{\gamma}}}f(x)\,dx \biggr] ^{p}>k(\sigma)\|f\|_{p,\widetilde {\Phi }_{1}}, \end{aligned}$$
    (59)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{(1-\theta_{1}(\sigma,x))^{1-q}\mu (x)}{U^{1-q\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho (U(x)V_{n})^{\gamma})}{e^{\alpha(U(x)V_{n})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \quad > k(\sigma)\|a\|_{q,\Psi}. \end{aligned}$$
    (60)

The above inequalities are with the best possible constant factor \(k(\sigma)\).

For \(\delta=-1\) in Theorems 2-4, we have the following inequalities with the homogeneous kernel of degree 0.

Corollary 2

If \(\gamma,\rho>0\), \(\alpha>-\rho\) (\(\alpha\geq 0\)), \(0<\sigma\leq1\), \(k(\sigma)\) is defined in (12), there exists \(n_{0}\in\mathbf{N}\) such that \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)), and \(U(\infty)=V(\infty)=\infty\), then

  1. (i)

    for \(p>1\), \(0<\|f\|_{p,\Phi_{-1}}\), and \(\|a\|_{q,\Psi }<\infty\), we have the following equivalent inequalities:

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(\frac {V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma }}}a_{n}f(x) \,dx< k(\sigma )\|f\|_{p,\Phi_{-1}}\|a\|_{q,\Psi}, \end{aligned}$$
    (61)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(\frac{V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma}}}f(x)\,dx \biggr] ^{p}< k(\sigma )\|f\|_{p,\Phi_{-1}}, \end{aligned}$$
    (62)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1+q\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho(\frac{V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{ \frac{1}{q}}< k(\sigma)\|a \|_{q,\Psi}; \end{aligned}$$
    (63)
  2. (ii)

    for \(p<0\), \(0<\|f\|_{p,\Phi_{-1}}\), and \(\|a\|_{q,\Psi }<\infty\), we have the following equivalent inequalities:

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(\frac {V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma }}}a_{n}f(x) \,dx>k(\sigma )\|f\|_{p,\Phi_{-1}}\|a\|_{q,\Psi}, \end{aligned}$$
    (64)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(\frac{V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma}}}f(x)\,dx \biggr] ^{p}>k(\sigma )\|f\|_{p,\Phi_{-1}}, \end{aligned}$$
    (65)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1+q\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho(\frac{V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{ \frac{1}{q}}>k(\sigma)\|a \|_{q,\Psi}; \end{aligned}$$
    (66)
  3. (iii)

    for \(0< p<1\), \(0<\|f\|_{p,\Phi_{-1}}\), and \(\|a\|_{q,\Psi}<\infty\), we have the following equivalent inequalities:

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(\frac {V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma }}}a_{n}f(x) \,dx>k(\sigma )\|f\|_{p,\widetilde{\Phi}_{-1}}\|a\|_{q,\Psi}, \end{aligned}$$
    (67)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(\frac{V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma}}}f(x)\,dx \biggr] ^{p}>k(\sigma )\|f\|_{p,\widetilde{\Phi}_{-1}}, \end{aligned}$$
    (68)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{(1-\theta_{-1 }(\sigma,x))^{1-q}\mu (x)}{U^{1+q\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho (\frac{V_{n}}{U(x)})^{\gamma})}{e^{\alpha(\frac{V_{n}}{U(x)})^{\gamma }}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \quad > k(\sigma)\|a\|_{q,\Psi}. \end{aligned}$$
    (69)

The above inequalities are with the best possible constant factor \(k(\sigma)\).

For \(\alpha=\rho\) and \(\gamma=\sigma\) in Theorems 2-4, we have the following corollary.

Corollary 3

If \(\rho>0\), \(0<\sigma\leq1\), there exists \(n_{0}\in\mathbf{N}\) such that \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)), and \(U(\infty)=V(\infty)=\infty\), then

  1. (i)

    for \(p>1\), \(0<\|f\|_{p,\Phi_{\delta}}\), \(\|a\|_{q,\Psi }<\infty\), we have the following equivalent inequalities with the best possible constant factor \(\frac{\ln2}{\sigma\rho}\):

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\sigma})}{e^{\rho(U^{\delta}(x)V_{n})^{\sigma }}}a_{n}f(x) \,dx< \frac{\ln2}{\sigma\rho}\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
    (70)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\sigma})}{e^{\rho(U^{\delta}(x)V_{n})^{\sigma}}}f(x)\,dx \biggr] ^{p}< \frac{\ln 2}{\sigma\rho}\|f\|_{p,\Phi_{\delta}}, \end{aligned}$$
    (71)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\sigma})}{ e^{\rho(U^{\delta}(x)V_{n})^{\sigma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \quad < \frac{\ln2}{\sigma\rho}\|a \|_{q,\Psi}; \end{aligned}$$
    (72)
  2. (ii)

    for \(p<0\), \(0<\|f\|_{p,\Phi_{\delta}}\), \(\|a\|_{q,\Psi }<\infty\), we have the following equivalent inequalities with the best possible constant factor \(\frac{\ln2}{\sigma\rho}\):

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\sigma})}{e^{\rho(U^{\delta}(x)V_{n})^{\sigma }}}a_{n}f(x) \,dx>\frac{\ln2}{\sigma\rho}\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
    (73)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\sigma})}{e^{\rho(U^{\delta}(x)V_{n})^{\sigma}}}f(x)\,dx \biggr] ^{p}>\frac{\ln 2}{\sigma\rho}\|f\|_{p,\Phi_{\delta}}, \end{aligned}$$
    (74)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\sigma})}{ e^{\rho(U^{\delta}(x)V_{n})^{\sigma}}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}>\frac{\ln2}{\sigma\rho}\|a \|_{q,\Psi}; \end{aligned}$$
    (75)
  3. (iii)

    for \(0< p<1\), \(0<\|f\|_{p,\Phi_{\delta}}\), and \(\|a\|_{q,\Psi}<\infty\), we have the following equivalent inequalities with the best possible constant factor \(\frac{\ln2}{\sigma\rho}\):

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta }(x)V_{n})^{\sigma})}{e^{\rho(U^{\delta}(x)V_{n})^{\sigma }}}a_{n}f(x) \,dx>\frac{\ln2}{\sigma\rho}\|f\|_{p,\widetilde{\Phi}_{\delta }}\|a\|_{q,\Psi }, \end{aligned}$$
    (76)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\frac{\sec h(\rho(U^{\delta}(x)V_{n})^{\sigma})}{e^{\rho(U^{\delta}(x)V_{n})^{\sigma}}}f(x)\,dx \biggr] ^{p}>\frac{\ln 2}{\sigma\rho}\|f\|_{p,\widetilde{\Phi}_{\delta}}, \end{aligned}$$
    (77)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{(1-\theta_{\delta}(\sigma ,x))^{1-q}\mu (x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\frac{\sec h(\rho (U^{\delta}(x)V_{n})^{\sigma})}{e^{\rho(U^{\delta}(x)V_{n})^{\sigma }}}a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \quad > \frac{\ln2}{\sigma\rho}\|a\|_{q,\Psi}. \end{aligned}$$
    (78)

For \(\alpha=0\) and \(\gamma=\sigma\) in Theorems 2-4, we have the following corollary.

Corollary 4

If \(\rho>0\), \(0<\sigma\leq1\), there exists \(n_{0}\in\mathbf{N}\) such that \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)), and \(U(\infty)=V(\infty)=\infty\), then

  1. (i)

    for \(p>1\), \(0<\|f\|_{p,\Phi_{\delta}}\), and \(\|a\|_{q,\Psi}<\infty\), we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi}{2\sigma\rho}\):

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\sec h\bigl(\rho\bigl(U^{\delta }(x)V_{n} \bigr)^{\sigma}\bigr)a_{n}f(x)\,dx< \frac{\pi}{2\sigma\rho}\|f \|_{p,\Phi _{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
    (79)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\sec h\bigl(\rho\bigl(U^{\delta}(x)V_{n} \bigr)^{\sigma }\bigr)f(x)\,dx \biggr] ^{p}< \frac{\pi}{2\sigma\rho}\|f \|_{p,\Phi_{\delta}}, \end{aligned}$$
    (80)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\sec h\bigl(\rho \bigl(U^{\delta}(x)V_{n}\bigr)^{\sigma }\bigr)a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}< \frac{\pi}{2\sigma\rho}\|a \|_{q,\Psi}; \end{aligned}$$
    (81)
  2. (ii)

    for \(p<0\), \(0<\|f\|_{p,\Phi_{\delta}}\), and \(\|a\|_{q,\Psi }<\infty\), we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi}{2\sigma\rho}\):

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\sec h\bigl(\rho\bigl(U^{\delta }(x)V_{n} \bigr)^{\sigma}\bigr)a_{n}f(x)\,dx>\frac{\pi}{2\sigma\rho}\|f \|_{p,\Phi _{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
    (82)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\sec h\bigl(\rho\bigl(U^{\delta}(x)V_{n} \bigr)^{\sigma }\bigr)f(x)\,dx \biggr] ^{p}>\frac{\pi}{2\sigma\rho}\|f \|_{p,\Phi_{\delta}}, \end{aligned}$$
    (83)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{\mu(x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\sec h\bigl(\rho \bigl(U^{\delta}(x)V_{n}\bigr)^{\sigma }\bigr)a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}>\frac{\pi}{2\sigma\rho}\|a \|_{q,\Psi}; \end{aligned}$$
    (84)
  3. (iii)

    for \(0< p<1\), \(0<\|f\|_{p,\Phi_{\delta}}\), and \(\|a\|_{q,\Psi}<\infty\), we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi}{2\sigma\rho}\):

    $$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\sec h\bigl(\rho\bigl(U^{\delta }(x)V_{n} \bigr)^{\sigma}\bigr)a_{n}f(x)\,dx>\frac{\pi}{2\sigma\rho}\|f \|_{p,\widetilde{\Phi}_{\delta}}\|a\|_{q,\Psi}, \end{aligned}$$
    (85)
    $$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\nu_{n}}{V_{n}^{1-p\sigma}} \biggl[ \int_{0}^{\infty}\sec h\bigl(\rho\bigl(U^{\delta}(x)V_{n} \bigr)^{\sigma }\bigr)f(x)\,dx \biggr] ^{p}>\frac{\pi}{2\sigma\rho}\|f \|_{p,\widetilde{\Phi}_{\delta}}, \end{aligned}$$
    (86)
    $$\begin{aligned}& \Biggl\{ \int_{0}^{\infty}\frac{(1-\theta_{\delta}(\sigma ,x))^{1-q}\mu (x)}{U^{1-q\delta\sigma}(x)} \Biggl[ \sum _{n=1}^{\infty}\sec h\bigl(\rho \bigl(U^{\delta}(x)V_{n}\bigr)^{\sigma}\bigr)a_{n} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}} \\& \quad > \frac{\pi}{2\sigma\rho}\|a\|_{q,\Psi}. \end{aligned}$$
    (87)

Remark 2

For \(\mu(x)=\nu_{n}=1\) in (52), we have the following inequality with the best possible constant factor \(k(\sigma)\):

$$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(x^{\delta }n)^{\gamma})}{e^{\alpha(x^{\delta}n)^{\gamma}}}a_{n}f(x) \,dx \\& \quad < k(\sigma) \biggl[ \int_{0}^{\infty}x^{p(1-\delta\sigma )-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\sigma )-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(88)

In particular, for \(\delta=1\), we have the following inequality with inhomogeneous kernel:

$$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(xn)^{\gamma })}{e^{\alpha(xn)^{\gamma}}}a_{n}f(x) \,dx \\& \quad < k(\sigma) \biggl[ \int_{0}^{\infty}x^{p(1-\sigma)-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\sigma)-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}; \end{aligned}$$
(89)

for \(\delta=-1\), we have the following inequality with inhomogeneous kernel:

$$\begin{aligned}& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{\sec h(\rho(\frac{n}{x})^{\gamma})}{e^{\alpha(\frac{n}{x})^{\gamma}}}a_{n}f(x) \,dx \\& \quad < k(\sigma) \biggl[ \int_{0}^{\infty}x^{p(1+\sigma)-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\sigma)-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(90)

We still can obtain a large number of other inequalities by using some particular parameters in theorems and corollaries.