1 Introduction

Assuming that \(f,g\in L^{2}(\mathbf{R}_{+})\), \(\|f\| =\{\int_{0}^{\infty }f^{2}(x)\,dx\}^{\frac{1}{2}} >0\), \(\|g\|>0\), we have the following Hilbert integral inequality (cf. [1]):

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \pi\|f\|\|g\|, $$
(1.1)

where the constant factor π is best possible. If \(a=\{a_{m}\} _{m=1}^{\infty},b=\{b_{n}\}_{n=1}^{\infty}\in l^{2}\), \(\|a\|=\{\sum_{m=1}^{\infty }a_{m}^{2}\}^{\frac{1}{2}}>0\), \(\|b\|>0\), then we have the following discrete Hilbert inequality:

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \pi \|a\|\|b\|, $$
(1.2)

with the same best constant factor π. Inequalities (1.1) and (1.2) are important in analysis and its applications (cf. [2, 3]). On the other hand, we have the following Mulholland inequality with the same best constant factor π (cf. [1, 4]):

$$ \sum_{m=2}^{\infty}\sum _{n=2}^{\infty}\frac{a_{m}b_{n}}{\ln mn}< \pi \Biggl\{ \sum _{m=2}^{\infty}ma_{m}^{2}\sum _{n=2}^{\infty }nb_{n}^{2} \Biggr\} ^{\frac{1}{2}}. $$
(1.3)

In 1998, by introducing an independent parameter \(\lambda\in(0,1]\), Yang [5] gave an extension of (1.1). Generalizing the results from [5], Yang [3] gave some extensions of (1.1) and (1.2) as follows: If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\lambda_{1}+\lambda _{2}=\lambda \in\mathbf{R}\), \(k_{\lambda}(x,y)\) is a non-negative homogeneous function of degree −λ satisfying

$$k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda }(t,1)t^{\lambda_{1}-1} \,dt\in\mathbf{R}_{+}, $$

\(\phi(x)=x^{p(1-\lambda _{1})-1}\), \(\psi(x)=x^{q(1-\lambda_{2})-1}\), \(f(x),g(y)\geq0\),

$$ f\in L_{p,\phi}(\mathbf{R}_{+})= \biggl\{ f\Bigm|\|f \|_{p,\phi}:= \biggl\{ \int_{0}^{\infty} \phi(x) \bigl|f(x) \bigr|^{p}\,dx \biggr\} ^{\frac{1}{p}}< \infty \biggr\} , $$

\(g\in L_{q,\psi}(\mathbf{R}_{+})\), and \(\|f\|_{p,\phi}, \|g\|_{q,\psi }>0\), then

$$ \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda }(x,y)f(x)g(y) \,dx\,dy< k(\lambda _{1})\|f\|_{p,\phi}\|g\|_{q,\psi}, $$
(1.4)

where the constant factor \(k(\lambda_{1})\) is best possible. Moreover, if \(k_{\lambda}(x,y)\) is finite and \(k_{\lambda}(x,y)x^{\lambda _{1}-1}\) (\(k_{\lambda}(x,y)y^{\lambda_{2}-1}\)) is decreasing for \(x>0\) (\(y>0\)), then for \(a_{m},b_{n}\geq0\),

$$ a=\{a_{m}\}_{m=1}^{\infty}\in l_{p,\phi}= \Biggl\{ a\Bigm|\|a\|_{p,\phi }:= \Biggl\{ \sum_{m=1}^{\infty} \phi(m)|a_{m}|^{p} \Biggr\} ^{\frac{1}{p}}< \infty \Biggr\} , $$

and \(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\psi}\), \(\|a\|_{p,\phi },\|b\|_{q,\psi}>0\), we have

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}k_{\lambda }(m,n)a_{m}b_{n}< k( \lambda_{1})\|a\|_{p,\phi}\|b\|_{q,\psi}, $$
(1.5)

where the constant factor \(k(\lambda_{1})\) is still the best possible. Clearly, for \(p=q=2\), \(\lambda=1\), \(k_{1}(x,y)=\frac{1}{x+y}\) and \(\lambda _{1}=\lambda_{2}=\frac{1}{2}\), (1.4) reduces to (1.1), while (1.5) reduces to (1.2).

Some other results about Hilbert-type inequalities can be found in [613]. On half-discrete Hilbert-type inequalities with the general non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant factors are best possible. In 2005, Yang [14] gave a result with the kernel \(\frac {1}{(1+nx)^{\lambda}}\) by introducing a variable and proved that the constant factor is best possible. Recently, Wang and Yang [15] gave a more accurate reverse half-discrete Hilbert-type inequality, and Yang [16] provided the following half-discrete Hilbert inequality with best constant factor:

$$ \int_{0}^{\infty}f(x)\sum _{n=1}^{\infty}\frac{a_{n}}{x+n}\,dx< \pi\|f\|\|a\|. $$
(1.6)

In this paper, by means of weight functions and Hermite-Hadamard’s inequality, a new half-discrete Mulholland-type inequality similar to (1.3) and (1.6) with a best possible constant factor is given as follows:

$$ \int_{1}^{\infty}f(x)\sum _{n=2}^{\infty}\frac{a_{n}}{1+\ln x\ln n}\,dx< \pi \Biggl\{ \int _{1}^{\infty}xf^{2}(x)\,dx\sum _{n=2}^{\infty }na_{n}^{2} \Biggr\} ^{\frac{1}{2}}. $$
(1.7)

Moreover, a best extension of (1.7) with multi-parameters, some equivalent forms, the operator expressions as well as some particular cases are considered.

2 Some lemmas

Lemma 2.1

If \(0<\sigma<\lambda\) (\(\sigma\leq1\)), \(\alpha>0\), \(\beta\geq \frac{2}{3}\), \(\delta\in\{-1,1\}\), the weight functions \(\omega(n)\) and \(\varpi(x)\) are defined by

$$\begin{aligned}& \omega(n) :=(\ln\beta n)^{\sigma}\int_{\frac{1}{\alpha}}^{\infty} \frac{(\ln\alpha x)^{\delta\sigma-1}}{x(1+\ln^{\delta}\alpha x\ln \beta n)^{\lambda}}\,dx,\quad n\in\mathbf{N}\backslash\{1 \}, \end{aligned}$$
(2.1)
$$\begin{aligned}& \varpi(x) :=(\ln\alpha x)^{\delta\sigma}\sum_{n=2}^{\infty} \frac {(\ln \beta n)^{\sigma-1}}{n(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} ,\quad x\in \biggl(\frac{1}{\alpha},\infty \biggr), \end{aligned}$$
(2.2)

then we have

$$ \varpi(x)< \omega(n)=B(\sigma,\lambda-\sigma). $$
(2.3)

Proof

Substituting \(t=\ln^{\delta}\alpha x\ln\beta n\) in (2.1), and by a simple calculation, for \(\delta\in\{-1,1\}\), we have

$$ \omega(n)=\int_{0}^{\infty}\frac{1}{(1+t)^{\lambda}}t^{\sigma -1} \,dt=B(\sigma,\lambda-\sigma). $$

For fixed \(x>\frac{1}{\alpha}\), in view of the conditions, it is easy to find that

$$ h(x,y):=\frac{(\ln\beta y)^{\sigma-1}}{y(1+\ln^{\delta}\alpha x\ln \beta y)^{\lambda}}=\frac{1}{y(1+\ln^{\delta}\alpha x\ln\beta y)^{\lambda }(\ln\beta y)^{1-\sigma}} $$

is decreasing and strictly convex with \(h_{y}^{\prime}(x,y)<0\) and \(h_{y^{2}}^{\prime\prime}(x,y)>0\), for \(y\in(\frac{3}{2},\infty)\). Hence by the Hermite-Hadamard inequality (cf. [17]), we find

$$\begin{aligned} &\varpi(x)< (\ln\alpha x)^{\delta\sigma}\int_{\frac{3}{2}}^{\infty } \frac{1}{y(1+\ln^{\delta}\alpha x\ln\beta y)^{\lambda}(\ln\beta y)^{1-\sigma}}\,dy \\ &\hphantom{a}\overset{t=\ln^{\delta}\alpha x\ln\beta y}{=}\int _{\ln^{\delta }\alpha x\ln(\frac{3}{2}\beta)}^{\infty} \frac{t^{\sigma-1}}{(1+t)^{\lambda }}\,dt\leq B(\sigma, \lambda-\sigma), \end{aligned}$$

and then (2.3) follows. □

Lemma 2.2

Let the assumptions of Lemma  2.1 be fulfilled and, additionally, let \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(a_{n}\geq0\), \(n\in \mathbf{N}\backslash\{1\}\), \(f(x)\) is a non-negative measurable function in \((\frac{1}{\alpha},\infty)\). Then we have the following inequalities:

$$\begin{aligned}& \begin{aligned}[b] J &:= \Biggl\{ \sum_{n=2}^{\infty} \frac{1}{n}(\ln\beta n)^{p\sigma -1} \biggl[ \int_{\frac{1}{\alpha}}^{\infty} \frac{f(x)}{(1+\ln^{\delta}\alpha x\ln \beta n)^{\lambda}}\,dx \biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ &\leq \bigl[ B(\sigma,\lambda-\sigma) \bigr] ^{\frac{1}{q}} \biggl\{ \int _{\frac{1}{\alpha}}^{\infty}\varpi(x)x^{p-1}(\ln\alpha x)^{p(1-\delta \sigma)-1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}}, \end{aligned} \end{aligned}$$
(2.4)
$$\begin{aligned}& \begin{aligned}[b] L_{1} &:= \Biggl\{ \int_{\frac{1}{\alpha}}^{\infty} \frac{(\ln\alpha x)^{q\delta\alpha-1}}{x[\varpi(x)]^{q-1}} \Biggl[ \sum_{n=2}^{\infty} \frac{a_{n}}{(1+\ln ^{\delta}\alpha x\ln\beta n)^{\lambda}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac {1}{q}} \\ &\leq \Biggl\{ B(\sigma,\lambda-\sigma)\sum_{n=2}^{\infty }n^{q-1}( \ln \beta n)^{q(1-\sigma)-1}a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$
(2.5)

Proof

By Hölder’s inequality (cf. [17]) and (2.3), it follows that

$$\begin{aligned} & \biggl[ \int_{\frac{1}{\alpha}}^{\infty}\frac{f(x)\,dx}{(1+\ln^{\delta }\alpha x\ln\beta n)^{\lambda}} \biggr]^{p} \\ &\quad= \biggl\{ \int_{\frac{1}{\alpha}}^{\infty}\frac{1}{(1+\ln^{\delta }\alpha x\ln\beta n)^{\lambda}} \biggl[ \frac{(\ln\alpha x)^{(1-\delta \sigma)/q}}{(\ln\beta n)^{(1-\sigma)/p}}\frac{x^{\frac {1}{q}}f(x)}{n^{\frac{1}{p}}} \biggr] \\ &\qquad{}\times \biggl[ \frac{(\ln\beta n)^{(1-\sigma)/p}}{(\ln\alpha x)^{(1-\delta\sigma)/q}}\frac{n^{\frac{1}{p}}}{x^{\frac{1}{q}}} \biggr]\,dx \biggr\} ^{p}\leq\int_{\frac{1}{\alpha}}^{\infty} \frac{x^{p-1}(\ln \alpha x)^{(1-\delta\sigma)(p-1)}}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \frac{f^{p}(x)\,dx}{n(\ln\beta n)^{1-\sigma}} \\ &\qquad{}\times \biggl\{ \int_{\frac{1}{\alpha}}^{\infty} \frac{n^{q-1}}{(1+\ln ^{\delta}\alpha x\ln\beta n)^{\lambda}} \frac{(\ln\beta n)^{(1-\sigma )(q-1)}}{x(\ln\alpha x)^{1-\delta\sigma}}\,dx \biggr\} ^{p-1} \\ &\quad= \bigl\{ \omega(n)n^{q-1}(\ln\beta n)^{q(1-\sigma)-1} \bigr\} ^{p-1}\int_{\frac{1}{\alpha}}^{\infty}\frac{x^{p-1}(\ln\alpha x)^{(1-\delta\sigma)(p-1)}}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda }} \frac{f^{p}(x)\,dx}{n(\ln\beta n)^{1-\sigma}} \\ &\quad= \bigl[ B(\sigma,\lambda-\sigma) \bigr] ^{p-1}n(\ln\beta n)^{1-p\sigma }\int_{\frac{1}{\alpha}}^{\infty}\frac{x^{p-1}(\ln\alpha x)^{(1-\delta \sigma)(p-1)}}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \frac{f^{p}(x)\,dx}{n(\ln\beta n)^{1-\sigma}}. \end{aligned}$$

Then by Lebesgue term-by-term integration theorem (cf. [18]), we have

$$\begin{aligned} J \leq& \bigl[ B(\sigma,\lambda-\sigma) \bigr] ^{\frac{1}{q}} \Biggl\{ \sum _{n=2}^{\infty}\int_{\frac{1}{\alpha}}^{\infty} \frac{x^{p-1}(\ln \alpha x)^{(1-\delta\sigma)(p-1)}}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}}\frac{f^{p}(x)\,dx}{n(\ln\beta n)^{1-\sigma}} \Biggr\} ^{\frac{1}{p}} \\ =& \bigl[ B(\sigma,\lambda-\sigma) \bigr] ^{\frac{1}{q}} \Biggl\{ \int _{\frac{1}{\alpha}}^{\infty}\sum_{n=2}^{\infty} \frac{x^{p-1}(\ln\alpha x)^{(1-\delta\sigma)(p-1)}}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda }}\frac{f^{p}(x)\,dx}{n(\ln\beta n)^{1-\sigma}} \Biggr\} ^{\frac{1}{p}} \\ =& \bigl[ B(\sigma,\lambda-\sigma) \bigr] ^{\frac{1}{q}} \biggl\{ \int _{\frac{1}{\alpha}}^{\infty}\varpi(x)x^{p-1}(\ln\alpha x)^{p(1-\delta \sigma)-1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}}, \end{aligned}$$

hence, (2.4) follows.

By Hölder’s inequality again, we have

$$\begin{aligned} & \Biggl[ \sum_{n=2}^{\infty}\frac{a_{n}}{(1+\ln^{\delta}\alpha x\ln \beta n)^{\lambda}} \Biggr] ^{q} \\ &\quad= \Biggl\{ \sum_{n=2}^{\infty} \frac{1}{(1+\ln^{\delta}\alpha x\ln \beta n)^{\lambda}} \biggl[ \frac{(\ln\alpha x)^{(1-\delta\sigma)/q}}{(\ln \beta n)^{(1-\sigma)/p}}\frac{x^{\frac{1}{q}}}{n^{\frac{1}{p}}} \biggr] \\ &\qquad{}\times \biggl[ \frac{(\ln\beta n)^{(1-\sigma)/p}}{(\ln\alpha x)^{(1-\delta\sigma)/q}}\frac{n^{\frac{1}{p}}a_{n}}{x^{\frac {1}{q}}} \biggr] \Biggr\} ^{q}\leq \Biggl\{ \sum_{n=2}^{\infty} \frac{x^{p-1}(\ln\alpha x)^{(1-\delta\sigma)(p-1)}}{n(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}(\ln\beta n)^{1-\sigma}} \Biggr\} ^{q-1} \\ &\qquad{}\times\sum_{n=2}^{\infty} \frac{n^{q-1}}{(1+\ln^{\delta}\alpha x\ln \beta n)^{\lambda}} \frac{(\ln\beta n)^{(1-\sigma)(q-1)}}{x(\ln\alpha x)^{1-\delta\sigma}}a_{n}^{q} \\ &\quad=\frac{x[\varpi(x)]^{q-1}}{(\ln\alpha x)^{q\delta\sigma-1}}\sum_{n=2}^{\infty} \frac{n^{q-1}}{x(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}}(\ln\alpha x)^{\delta\sigma-1}(\ln\beta n)^{(1-\sigma )(q-1)}a_{n}^{q}. \end{aligned}$$

By the Lebesgue term-by-term integration theorem, we have

$$\begin{aligned} L_{1}&\leq \Biggl\{ \int_{\frac{1}{\alpha}}^{\infty}\sum _{n=2}^{\infty} \frac{n^{q-1}}{x(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}}(\ln \alpha x)^{\delta\sigma-1}(\ln\beta n)^{(1-\sigma)(q-1)}a_{n}^{q} \,dx \Biggr\} ^{\frac{1}{q}} \\ &= \Biggl\{ \sum_{n=2}^{\infty} \biggl[ (\ln \beta n)^{\sigma}\int_{\frac {1}{\alpha}}^{\infty} \frac{(\ln\alpha x)^{\delta\sigma-1}\,dx}{x(1+\ln ^{\delta}\alpha x\ln\beta n)^{\lambda}} \biggr] n^{q-1}(\ln\beta n)^{q(1-\sigma)-1}a_{n}^{q} \Biggr\} ^{\frac{1}{q}} \\ &= \Biggl\{ \sum_{n=2}^{\infty} \omega(n)n^{q-1}(\ln\beta n)^{q(1-\sigma )-1}a_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \end{aligned}$$

and in view of (2.3), inequality (2.5) follows. □

3 Main results

We introduce the functions

$$\begin{aligned}& \Phi_{\delta}(x) :=x^{p-1}(\ln\alpha x)^{p(1-\delta\sigma )-1}\quad \biggl(x>\frac{1}{\alpha} \biggr), \\& \Psi(n) :=n^{q-1}(\ln\beta n)^{q(1-\sigma)-1}\quad \bigl(n\in\mathbf {N} \backslash \{1\} \bigr), \end{aligned}$$

wherefrom \([\Phi_{\delta}(x)]^{1-q}=\frac{1}{x}(\ln\alpha x)^{q\delta \sigma-1}\), and \([\Psi(n)]^{1-p}=\frac{1}{n}(\ln\beta n)^{p\sigma-1}\).

Theorem 3.1

If \(0<\sigma<\lambda\) (\(\sigma\leq1\)), \(\alpha>0\), \(\beta \geq\frac{2}{3}\), \(\delta\in\{-1,1\}\), \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x)\), \(a_{n}\geq0\), \(f\in L_{p,\Phi}(\frac{1}{\alpha},\infty)\), \(a=\{a_{n}\}_{n=2}^{\infty}\in l_{q,\Psi}\), \(\|f\|_{p,\Phi_{\delta}}>0\), and \(\|a\|_{q,\Psi}>0\), then we have the following equivalent inequalities:

$$\begin{aligned}& \begin{aligned}[b] I &:=\sum_{n=2}^{\infty}a_{n} \int_{\frac{1}{\alpha}}^{\infty}\frac {f(x)\,dx}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \\ &=\int_{\frac{1}{\alpha}}^{\infty}f(x)\sum _{n=2}^{\infty}\frac {a_{n}\,dx}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}}< B(\sigma,\lambda -\sigma )\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, \end{aligned} \end{aligned}$$
(3.1)
$$\begin{aligned}& J= \Biggl\{ \sum_{n=2}^{\infty} \bigl[\Psi(n) \bigr]^{1-p} \biggl[ \int_{\frac {1}{\alpha}}^{\infty} \frac{f(x)\,dx}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda }} \biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< B( \sigma,\lambda-\sigma )\|f\|_{p,\Phi _{\delta}}, \end{aligned}$$
(3.2)
$$\begin{aligned}& L:= \Biggl\{ \int_{\frac{1}{\alpha}}^{\infty} \bigl[ \Phi_{\delta }(x) \bigr]^{1-q} \Biggl[ \sum _{n=2}^{\infty}\frac{a_{n}}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \Biggr] ^{q} \,dx \Biggr\} ^{\frac{1}{q}}< B(\sigma,\lambda -\sigma)\|a\|_{q,\Psi}, \end{aligned}$$
(3.3)

where the constant \(B(\sigma,\lambda-\sigma)\) is the best possible in the above inequalities.

Proof

The two expressions for I in (3.1) follow from Lebesgue’s term-by-term integration theorem. By (2.4) and (2.3), we have (3.2). By Hölder’s inequality, we have

$$ I=\sum_{n=2}^{\infty} \biggl[ \Psi^{\frac{-1}{q}}(n)\int_{\frac {1}{\alpha}}^{\infty} \frac{f(x)\,dx}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda }} \biggr] \bigl[\Psi^{\frac{1}{q}}(n)a_{n} \bigr]\leq J\|a\|_{q,\Psi}. $$
(3.4)

Then by (3.2), we have (3.1).

On the other hand, assuming that (3.1) is valid, we set

$$ a_{n}:= \bigl[\Psi(n) \bigr]^{1-p} \biggl[ \int _{\frac{1}{\alpha}}^{\infty}\frac {f(x)\,dx}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \biggr] ^{p-1},\quad n\in \mathbf{N}\backslash\{1\}. $$

It follows that \(J^{p-1}=\|a\|_{q,\Psi}\). By (2.4), we find \(J<\infty \). If \(J=0\), then (3.2) is trivially valid; if \(J>0\), then by (3.1), we have

$$ \|a\|_{q,\Psi}^{q}=J^{q(p-1)}=J^{p}=I< B( \sigma,\lambda-\sigma )\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, $$

namely, \(\|a\|_{q,\Psi}^{q-1}=J< B(\sigma,\lambda-\sigma )\|f\|_{p,\Phi _{\delta}}\). That is, (3.2) is equivalent to (3.1).

By (2.3) we have \([\varpi(x) ]^{1-q}>[B(\sigma,\lambda-\sigma )]^{1-q}\). Then in view of (2.5), we have (3.3). By Hölder’s inequality, we find

$$ I=\int_{\frac{1}{\alpha}}^{\infty} \bigl[\Phi_{\delta}^{\frac {1}{p}}(x)f(x) \bigr] \Biggl[ \Phi_{\delta}^{\frac{-1}{p}}(x)\sum _{n=2}^{\infty}\frac {a_{n}}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \Biggr]\,dx\leq \|f \|_{p,\Phi_{\delta}}L. $$
(3.5)

Then by (3.3), we have (3.1).

On the other hand, assume that (3.1) is valid. Setting

$$ f(x):= \bigl[\Phi_{\delta}(x) \bigr]^{1-q} \Biggl[ \sum _{n=2}^{\infty}\frac{a_{n}}{ (1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \Biggr] ^{q-1}, \quad x \in \biggl(\frac{1}{\alpha},\infty \biggr), $$

then \(L^{q-1}=\|f\|_{p,\Phi_{\delta}}\). By (2.5), we find \(L<\infty\). If \(L=0\), then (3.3) is trivially valid; if \(L>0\), then by (3.1), we have

$$ \|f\|_{p,\Phi_{\delta}}^{p}=L^{p(q-1)}=L^{q}=I< B( \sigma,\lambda -\sigma )\|f\|_{p,\Phi_{\delta}}\|a\|_{q,\Psi}, $$

therefore \(\|f\|_{p,\Phi_{\delta}}^{p-1}=L< B(\sigma,\lambda-\sigma )\|a\|_{q,\Psi}\), that is, (3.3) is equivalent to (3.1). Hence, inequalities (3.1), (3.2), and (3.3) are equivalent.

For \(0<\varepsilon<p(\lambda-\sigma)\), setting \(E_{\delta}:=\{ x;x>\frac{1}{\alpha},\ln^{\delta}\alpha x\in(0,1)\}\),

$$ \widetilde{f}(x)=\frac{1}{x}(\ln\alpha x)^{\delta(\sigma+\frac{\varepsilon}{p})-1},\quad x\in E_{\delta};\qquad \widetilde{f}(x)=0,\quad \biggl\{ x;x>\frac{1}{ \alpha} \biggr\} \backslash E_{\delta}, $$

and \(\widetilde{a}_{n}=\frac{1}{n}(\ln\beta n)^{\sigma-\frac {\varepsilon}{q}-1}\), \(n\in\mathbf{N}\backslash\{1\}\), if there exists a positive number k (\(\leq B(\sigma,\lambda-\sigma)\)), such that (3.1) is valid when replacing \(B(\sigma,\lambda-\sigma)\) with k, then in particular, for \(\delta=\pm1\), setting \(u=\ln^{\delta}\alpha x\), it follows that

$$\begin{aligned} &\int_{E_{\delta}}\frac{dx}{x(\ln\alpha x)^{-\delta\varepsilon+1}}=\int _{0}^{1}\frac{|\delta|u^{\delta-1}}{u^{-\varepsilon+\delta}}\,du= \frac{1}{\varepsilon}, \\ &\widetilde{I} :=\sum_{n=2}^{\infty} \int_{\frac{1}{\alpha}}^{\infty} \frac{1}{(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}} \widetilde {a}_{n}\widetilde{f}(x)\,dx< k\|\widetilde{f} \|_{p,\Phi_{\delta}}\|\widetilde{a} \|_{q,\Psi} \\ &\hphantom{\widetilde{I}}=k \biggl\{ \int_{E_{\delta}}\frac{dx}{x(\ln\alpha x)^{-\delta \varepsilon +1}} \biggr\} ^{\frac{1}{p}} \Biggl\{ \frac{1}{2(\ln2\beta)^{\varepsilon +1}}+\sum _{n=3}^{\infty}\frac{1}{n(\ln\beta n)^{\varepsilon+1}} \Biggr\} ^{\frac{1}{q}} \\ &\hphantom{\widetilde{I}}< k \biggl(\frac{1}{\varepsilon} \biggr)^{\frac{1}{p}} \biggl\{ \frac{1}{2(\ln2\beta )^{\varepsilon+1}}+ \int_{2}^{\infty}\frac{1}{x(\ln\beta x)^{\varepsilon +1}} \,dx \biggr\} ^{\frac{1}{q}} \\ &\hphantom{\widetilde{I}}=\frac{k}{\varepsilon} \biggl\{ \frac{\varepsilon}{2(\ln2\beta )^{\varepsilon+1}}+\frac{1}{(\ln2\beta)^{\varepsilon}} \biggr\} ^{\frac{1}{q}}, \end{aligned}$$
(3.6)
$$\begin{aligned} &\widetilde{I} =\sum_{n=2}^{\infty} \frac{1}{n}(\ln\beta n)^{\sigma -\frac{\varepsilon}{q}-1}\int_{E_{\delta}} \frac{(\ln\alpha x)^{\delta (\sigma+\frac{\varepsilon}{p})-1}}{x(1+\ln^{\delta}\alpha x\ln\beta n)^{\lambda}}\,dx \\ &\overset{t=\ln^{\delta}\alpha x\ln\beta n}{=}\sum _{n=2}^{\infty }\frac{1}{n(\ln\beta n)^{\varepsilon+1}}\int_{0}^{\ln\beta n} \frac{1}{(1+t)^{\lambda}}t^{\sigma+\frac{\varepsilon}{p}-1}\,dt \\ &\hphantom{\widetilde{I}}=B \biggl( \sigma+\frac{\varepsilon}{p},\lambda-\sigma-\frac {\varepsilon }{p} \biggr) \sum_{n=2}^{\infty}\frac{1}{n(\ln\beta n)^{\varepsilon +1}}-A( \varepsilon) \\ &\hphantom{\widetilde{I}}>B \biggl( \sigma+\frac{\varepsilon}{p},\lambda-\sigma-\frac {\varepsilon }{p} \biggr) \int_{2}^{\infty}\frac{1}{y(\ln\beta y)^{\varepsilon+1}}\,dy-A(\varepsilon) \\ &\hphantom{\widetilde{I}}=\frac{1}{\varepsilon(\ln2\beta)^{\varepsilon}}B \biggl( \sigma +\frac{\varepsilon}{p},\lambda-\sigma- \frac{\varepsilon}{p} \biggr) -A(\varepsilon), \\ &A(\varepsilon) :=\sum_{n=2}^{\infty} \frac{1}{n(\ln\beta n)^{\varepsilon +1}}\int_{\ln\beta n}^{\infty}\frac{1}{(t+1)^{\lambda}}t^{\sigma +\frac{\varepsilon}{p}-1} \,dt. \end{aligned}$$
(3.7)

We find

$$\begin{aligned} 0 < &A(\varepsilon)\leq\sum_{n=2}^{\infty} \frac{1}{n(\ln\beta n)^{\varepsilon+1}}\int_{\ln\beta n}^{\infty}\frac{1}{t^{\lambda}}t^{\sigma+\frac{\varepsilon}{p}-1} \,dt \\ =&\frac{1}{\frac{\lambda}{2}-\frac{\varepsilon}{p}}\sum_{n=2}^{\infty}\frac{1}{n(\ln\beta n)^{\sigma+\frac{\varepsilon}{q}+1}}< \infty, \end{aligned}$$

and so \(A(\varepsilon)=O(1)(\varepsilon\rightarrow0^{+})\). Hence by (3.6) and (3.7), it follows that

$$ \frac{1}{(\ln2\beta)^{\varepsilon}}B \biggl( \sigma+\frac{\varepsilon }{p},\lambda-\sigma- \frac{\varepsilon}{p} \biggr) -\varepsilon O(1)< k \biggl\{ \frac{\varepsilon}{2(\ln2\beta)^{\varepsilon+1}}+ \frac{1}{(\ln 2\beta )^{\varepsilon}} \biggr\} ^{\frac{1}{q}}, $$

and \(B(\sigma,\lambda-\sigma)\leq k(\varepsilon\rightarrow0^{+})\). Hence \(k=B(\sigma,\lambda-\sigma)\) is the best value of (3.1).

By the equivalence of the inequalities, the constant factor \(B(\sigma ,\lambda-\sigma)\) in (3.2) ((3.3)) is the best possible. Otherwise, we would reach the contradiction by (3.4) ((3.5)) that the constant factor in (3.1) is not the best possible. □

Remark 3.2

(i) Define the first type half-discrete Hilbert-type operator \(T_{1}:L_{p,\Phi_{\delta}}(\frac{1}{\alpha},\infty )\rightarrow l_{p,\Psi^{1-p}}\) as follows: For \(f\in L_{p,\Phi_{\delta}}(\frac{1}{ \alpha},\infty)\), we define \(T_{1}f \in l_{p,\Psi^{1-p}}\) by

$$ T_{1}f(n)=\int_{\frac{1}{\alpha}}^{\infty} \frac{1}{(1+\ln^{\delta }\alpha x\ln\beta n)^{\lambda}}f(x)\,dx,\quad n\in\mathbf{N}\backslash\{1\}. $$

Then by (3.2), \(\|T_{1}f\|_{p,\Psi^{1-p}}\leq B(\sigma,\lambda -\sigma)\|f\|_{p,\Phi_{\delta}}\) and so \(T_{1}\) is a bounded operator with \(\|T_{1}\|\leq B(\sigma,\lambda-\sigma)\). Since by Theorem 3.1, the constant factor in (3.2) is best possible, we have \(\|T_{1}\|=B(\sigma ,\lambda-\sigma)\).

(ii) Define the second type half-discrete Hilbert-type operator \(T_{2}:l_{q,\Psi}\rightarrow L_{q,\Phi_{\delta}^{1-q}}(\frac {1}{\alpha},\infty)\) as follows: For \(a\in l_{q,\Psi}\), we define \(T_{2}a \in L_{q,\Phi_{\delta}^{1-q}}(\frac{1}{\alpha},\infty)\) by

$$ T_{2}a(x)=\sum_{n=2}^{\infty} \frac{1}{(1+\ln^{\delta}\alpha x\ln \beta n)^{\lambda}}a_{n},\quad x\in \biggl(\frac{1}{\alpha},\infty \biggr). $$

Then by (3.3), \(\|T_{2}a\|_{q,\Phi_{\delta}^{1-q}}\leq B(\sigma ,\lambda-\sigma)\|a\|_{q,\Psi}\) and so \(T_{2}\) is a bounded operator with \(\|T_{2}\|\leq B(\sigma,\lambda-\sigma)\). Since by Theorem 3.1, the constant factor in (3.3) is best possible, we have \(\|T_{2}\|=B(\sigma ,\lambda-\sigma)\).

Remark 3.3

For \(p=q=2\), \(\lambda=1\), \(\sigma=\frac{1}{2}\), \(\delta=1\) in (3.1), (3.2), and (3.3), (i) if \(\alpha=\beta=1\), then we have (1.7) and the following equivalent inequalities:

$$\begin{aligned}& \sum_{n=2}^{\infty}\frac{1}{n} \biggl( \int_{1}^{\infty}\frac {f(x)}{1+\ln x\ln n}\,dx \biggr) ^{2}< \pi^{2}\int_{1}^{\infty}xf^{2}(x) \,dx, \end{aligned}$$
(3.8)
$$\begin{aligned}& \int_{1}^{\infty}\frac{1}{x} \Biggl( \sum _{n=2}^{\infty}\frac {a_{n}}{1+\ln x\ln n} \Biggr) ^{2}\,dx< \pi^{2}\sum_{n=2}^{\infty}na_{n}^{2}; \end{aligned}$$
(3.9)

(ii) if \(\alpha=\beta=\frac{2}{3}\), then we have the following equivalent inequalities:

$$\begin{aligned}& \int_{\frac{3}{2}}^{\infty}\sum_{n=2}^{\infty} \frac{a_{n}f(x)\,dx}{1+\ln \frac{2}{3}x\ln\frac{2}{3}n}< \pi \Biggl\{ \int_{\frac{3}{2}}^{\infty }xf^{2}(x) \,dx\sum_{n=2}^{\infty}na_{n}^{2} \Biggr\} ^{\frac{1}{2}}, \end{aligned}$$
(3.10)
$$\begin{aligned}& \sum_{n=2}^{\infty}\frac{1}{n} \biggl( \int_{\frac{3}{2}}^{\infty}\frac {f(x)}{1+\ln\frac{2}{3}x\ln\frac{2}{3}n}\,dx \biggr) ^{2}< \pi^{2}\int_{\frac {3}{2}}^{\infty}xf^{2}(x) \,dx, \end{aligned}$$
(3.11)
$$\begin{aligned}& \int_{\frac{3}{2}}^{\infty}\frac{1}{x} \Biggl( \sum _{n=2}^{\infty}\frac {a_{n}}{1+\ln\frac{2}{3}x\ln\frac{2}{3}n} \Biggr) ^{2}\,dx< \pi ^{2}\sum_{n=2}^{\infty}na_{n}^{2}. \end{aligned}$$
(3.12)

Remark 3.4

For \(\delta=-1\) in (3.1), (3.2), and (3.3), setting \(F(x)=\ln^{\lambda}(\alpha x)f(x)\), \(\mu=\lambda-\sigma\) (>0), and \(\Phi(x):=x^{p-1}(\ln\alpha x)^{p(1-\mu)-1}\), we have the following new equivalent inequalities with the same best possible constant factor \(B(\sigma,\mu)\):

$$\begin{aligned} &\sum_{n=2}^{\infty}a_{n} \int_{\frac{1}{\alpha}}^{\infty}\frac {F(x)\,dx}{\ln ^{\lambda}(\alpha\beta nx)} =\int _{\frac{1}{\alpha}}^{\infty }F(x)\sum_{n=2}^{\infty} \frac{a_{n}}{\ln^{\lambda}(\alpha\beta nx)}\,dx \\ &\hphantom{\sum_{n=2}^{\infty}a_{n}\int_{\frac{1}{\alpha}}^{\infty}\frac {F(x)\,dx}{\ln ^{\lambda}(\alpha\beta nx)}}< B(\sigma,\mu)\|F\|_{p,\Phi}\|a\|_{q,\Psi}, \end{aligned}$$
(3.13)
$$\begin{aligned} & \Biggl\{ \sum_{n=2}^{\infty} \bigl[\Psi(n) \bigr]^{1-p} \biggl[ \int_{\frac {1}{\alpha}}^{\infty} \frac{F(x)\,dx}{\ln^{\lambda}(\alpha\beta nx)} \biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< B(\sigma, \mu) \|F\|_{p,\Phi}, \end{aligned}$$
(3.14)
$$\begin{aligned} & \Biggl\{ \int_{\frac{1}{\alpha}}^{\infty} \bigl[ \Phi(x) \bigr]^{1-q} \Biggl[ \sum_{n=2}^{\infty} \frac{a_{n}}{\ln^{\lambda}(\alpha\beta nx)} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}< B( \sigma, \mu)\|a\|_{q,\Psi}. \end{aligned}$$
(3.15)