Let \(g,h:[a,b]\rightarrow\mathbb{R}\) be two Lebesgue integrable functions. We consider the Čebyšev functional
$$ T(g,h)=\frac{1}{b-a}\int_{a}^{b}g(x)h(x)\,dx- \biggl( \frac{1}{b-a}\int_{a}^{b}g(x)\,dx \biggr) \biggl( \frac{1}{b-a}\int_{a}^{b}h(x)\,dx \biggr) . $$
(3.1)
The following results can be found in [10].
Proposition 7
Let
\(g:[a,b]\rightarrow\mathbb{R}\)
be a Lebesgue integrable function and
\(h:[a,b]\rightarrow\mathbb{R}\)
be an absolutely continuous function with
\((\cdot-a)(b-\cdot)[h^{\prime}]^{2}\in L[a,b]\). Then we have the inequality
$$ \bigl|T(g,h)\bigr|\leq\frac{1}{\sqrt{2}} \biggl( \frac{1}{b-a}\bigl|T(g,g)\bigr|\int _{a}^{b}(x-a) (b-x) \bigl[h^{\prime}(x)\bigr]^{2}\,dx \biggr) ^{1/2}. $$
(3.2)
The constant
\(\frac{1}{\sqrt{2}}\)
in (3.2) is the best possible.
Proposition 8
Let
\(h : [a, b] \to\mathbb{R}\)
be a monotonic nondecreasing function and let
\(g : [a, b] \to\mathbb{R}\)
be an absolutely continuous function such that
\(g^{\prime}\in L_{\infty}[a, b]\). Then we have the inequality
$$ \bigl|T(g,h)\bigr|\le\frac{1}{2(b-a)}\bigl\| g^{\prime}\bigr\| _{\infty} \int_{a}^{b}(x-a) (b-x)\,dh(x). $$
(3.3)
The constant
\(\frac{1}{2}\)
in (3.3) is the best possible.
Now by using aforementioned results, we are going to obtain generalizations of the results proved in the previous section.
For m-tuples \(w=(w_{1},\ldots,w_{m})\), \(x=(x_{1},\ldots,x_{m})\), and \(y=(y_{1},\ldots,y_{m})\) with \(x_{i},y_{i}\in[ a,b]\), \(w_{i}\in\mathbb{R}\) (\(i=1,\ldots,m\)), and the function \(T_{n}\) defined as in (1.11), denote
$$ \delta(s)=\sum_{i=1}^{m}w_{i}T_{n}(y_{i},s)- \sum_{i=1}^{m}w_{i}T_{n}(x_{i},s),\quad \forall s\in [ a,b].$$
(3.4)
Similarly for continuous functions \(x,y:[\alpha,\beta]\rightarrow [ a,b]\) and \(w:[\alpha,\beta]\rightarrow\mathbb{R}\), denote
$$ \Delta(s)=\int_{\alpha}^{\beta}w ( t ) T_{n} \bigl(y(t),s\bigr)\,dt-\int_{\alpha}^{\beta}w ( t ) T_{n}\bigl(x(t),s\bigr)\,dt,\quad \forall s\in [ a,b].$$
(3.5)
Hence by using these notations we define Čebyšev functionals as follows:
$$\begin{aligned}& T(\delta,\delta) =\frac{1}{b-a}\int_{a}^{b} \delta^{2}(s)\,ds- \biggl( \frac{1}{b-a}\int_{a}^{b} \delta(s)\,ds \biggr) ^{2}, \\& T(\Delta,\Delta) =\frac{1}{b-a}\int_{a}^{b} \Delta^{2}(s)\,ds- \biggl( \frac{1}{b-a}\int_{a}^{b} \Delta(s)\,ds \biggr) ^{2}. \end{aligned}$$
Now, we are ready to state the main results of this section:
Theorem 5
Let
\(n\in\mathbb{N}\), \(f:[a,b]\rightarrow\mathbb{R}\)
be such that
\(f^{(n)}\)
is an absolutely continuous function with
\((\cdot-a)(b-\cdot)[f^{(n+1)}]^{2}\in L[a,b]\)
and
\(x_{i},y_{i}\in [ a,b]\), \(w_{i}\in\mathbb{R}\) (\(i=1,2,\ldots,m\)), and let the functions
\(T_{n}\), T, and
δ
be defined in (1.11), (3.1) and (3.4), respectively. Then we have
$$\begin{aligned}& \sum_{i=1}^{m}w_{i}f ( y_{i} ) -\sum_{i=1}^{m}w_{i}f ( x_{i} ) \\& \quad =\frac{1}{b-a}\sum_{i=1}^{m}w_{i} \Biggl[ \sum_{k=0}^{n-2}\frac {1}{k! ( k+2 ) !} \bigl[ f^{ ( k+1 ) } ( a ) \bigl[ ( y_{i}-a ) ^{k+2}- ( x_{i}-a ) ^{k+2} \bigr] \\& \quad\quad{}-f^{ ( k+1 ) } ( b ) \bigl[ ( y_{i}-b ) ^{k+2}- ( x_{i}-b ) ^{k+2} \bigr] \bigr] \Biggr] \\& \quad\quad{} +\frac{ [ f^{(n-1)}(b)-f^{(n-1)}(a) ] }{(n-1)!(b-a)}\int_{a}^{b} \delta(s)\,ds+R_{n}^{1}(f;a,b), \end{aligned}$$
(3.6)
where the remainder
\(R_{n}^{1}(f;a,b)\)
satisfies the estimation
$$ \bigl|R_{n}^{1}(f;a,b)\bigr|\leq\frac{1}{(n-1)!} \biggl( \frac{b-a}{2}\biggl\vert T(\delta,\delta)\int_{a}^{b}(s-a) (b-s)\bigl[f^{(n+1)}(s)\bigr]^{2}\,ds\biggr\vert \biggr) ^{1/2}.$$
(3.7)
Proof
If we apply Proposition 7 for \(g\rightarrow\delta\) and \(h\rightarrow f^{(n)}\), then we obtain
$$\begin{aligned}& \biggl\vert \frac{1}{b-a}\int_{a}^{b} \delta(s)f^{(n)}(s)\,ds- \biggl( \frac {1}{b-a}\int_{a}^{b} \delta(s)\,ds \biggr) \biggl( \frac{1}{b-a}\int_{a}^{b}f^{(n)}(s)\,ds \biggr) \biggr\vert \\& \quad \leq\frac{1}{\sqrt{2}} \biggl( \frac{1}{b-a}\bigl|T(\delta,\delta)\bigr|\int _{a}^{b}(s-a) (b-s) \bigl[f^{(n+1)}(s)\bigr]^{2}\,ds \biggr) ^{1/2}. \end{aligned}$$
Therefore we have
$$\begin{aligned} \frac{1}{(n-1)!(b-a)}\int_{a}^{b} \delta(s)f^{(n)}(s)\,ds =&\frac{ [ f^{(n-1)}(b)-f^{(n-1)}(a) ] }{(n-1)!(b-a)^{2}}\int_{a}^{b} \delta (s)\,ds +\frac{1}{b-a}R_{n}^{1}(f;a,b), \end{aligned}$$
where \(R_{n}^{1}(f;a,b)\) satisfies inequality (3.7). Now from identity (2.1) we obtain (3.6). □
Here we state the integral version of the previous theorem.
Theorem 6
Let
\(f:[a,b]\rightarrow\mathbb{R}\)
be such that
\(f\in C^{n}[a,b]\)
for
\(n\in\mathbb{N}\)
with
\((\cdot-a)(b-\cdot)[f^{(n+1)}]^{2}\in L[a,b]\)
and
\(x,y:[\alpha ,\beta]\rightarrow[ a,b]\)
and
\(w:[\alpha,\beta]\rightarrow\mathbb{R}\)
and let the functions
\(T_{n}\), T
and Δ be defined in (1.11), (3.1) and (3.5), respectively. Then we have
$$\begin{aligned}& \int_{\alpha}^{\beta}w ( t ) f\bigl(y(t)\bigr)\,dt-\int _{\alpha}^{\beta }w ( t ) f\bigl(x(t)\bigr)\,dt \\& \quad =\frac{1}{b-a} \Biggl[ \sum_{k=0}^{n-2} \frac{1}{k! ( k+2 ) !}\int_{\alpha}^{\beta}w ( t ) \bigl[ f^{ ( k+1 ) } ( a ) \bigl[ \bigl( y(t)-a \bigr) ^{k+2}- \bigl( x(t)-a \bigr) ^{k+2} \bigr] \\& \quad\quad{} -f^{ ( k+1 ) } ( b ) \bigl[ \bigl( y ( t ) -b \bigr) ^{k+2}- \bigl( x ( t ) -b \bigr) ^{k+2} \bigr] \bigr]\,dt \Biggr] \\& \quad\quad{} +\frac{ [ f^{(n-1)}(b)-f^{(n-1)}(a) ] }{(n-1)!(b-a)}\int_{a}^{b} \Delta(s)\,ds+R_{n}^{2}(f;a,b), \end{aligned}$$
(3.8)
where the remainder
\(R_{n}^{2}(f;a,b)\)
satisfies the estimation
$$ \bigl|R_{n}^{2}(f;a,b)\bigr|\leq\frac{1}{(n-1)!} \biggl( \frac{b-a}{2}\biggl\vert T(\Delta,\Delta)\int_{a}^{b}(s-a) (b-s)\bigl[f^{(n+1)}(s)\bigr]^{2}\,ds\biggr\vert \biggr) ^{1/2}.$$
(3.9)
Proof
This result easily follows by proceeding as in the proof of previous theorem and by replacing (2.1) by (2.2). □
By using Proposition 8 we obtain the following Grüss type inequality.
Theorem 7
Let
\(f:[a,b]\rightarrow\mathbb{R}\)
be such that
\(f\in C^{n}[a,b]\)
for
\(n\in\mathbb{N}\)
with
\(f^{(n+1)}\geq0\)
on
\([a,b]\)
and let the functions
T
and
δ
be defined in (3.1) and (3.4), respectively. Then we have the representation (3.6) and the remainder
\(R_{n}^{1}(f;a,b)\)
satisfies the following condition:
$$ \bigl|R_{n}^{1}(f;a,b)\bigr|\leq\frac{1}{(n-1)!}\bigl\Vert \delta^{\prime}\bigr\Vert _{\infty } \biggl[ \frac{b-a}{2} \bigl[ f^{(n-1)}(b)+f^{(n-1)}(a) \bigr] - \bigl[ f^{(n-2)}(b)-f^{(n-2)}(a) \bigr] \biggr] .$$
(3.10)
Proof
If we apply Proposition 8 for \(g\rightarrow\delta\) and \(h\rightarrow f^{(n)}\), then we obtain
$$\begin{aligned}& \biggl\vert \frac{1}{b-a}\int_{a}^{b} \delta(s)f^{(n)}(s)\,ds- \biggl( \frac {1}{b-a}\int_{a}^{b} \delta(s)\,ds \biggr) \biggl( \frac{1}{b-a}\int_{a}^{b}f^{(n)}(s)\,ds \biggr) \biggr\vert \\& \quad\leq\frac{1}{2(b-a)}\bigl\Vert \delta^{\prime}\bigr\Vert _{\infty}\int _{a}^{b}(s-a) (b-s)f^{(n+1)}(s)\,ds. \end{aligned}$$
Since
$$\begin{aligned}& \int_{a}^{b}(s-a) (b-s)f^{(n+1)}(s)\,ds \\& \quad= \int_{a}^{b}(2s-a-b)f^{(n)}(s)\,ds \\& \quad = (b-a) \bigl[ f^{(n-1)}(b)+f^{(n-1)}(a) \bigr] -2 \bigl[ f^{(n-2)}(b)-f^{(n-2)}(a) \bigr] . \end{aligned}$$
(3.11)
Therefore, by using the identities (2.1) and (3.11) we deduce (3.10). □
Integral version of the above theorem can be given as:
Theorem 8
Let
\(f:[a,b]\rightarrow\mathbb{R}\)
be such that
\(f\in C^{n}[a,b]\)
for
\(n\in\mathbb{N}\)
with
\(f^{(n+1)}\geq0\)
on
\([a,b]\)
and let the functions
T
and Δ be defined in (3.1) and (3.5), respectively. Then we have the representation (3.8) and the remainder
\(R_{n}^{2}(f;a,b)\)
satisfies the following condition:
$$\bigl|R_{n}^{2}(f;a,b)\bigr|\leq\frac{1}{(n-1)!}\bigl\Vert \Delta^{\prime}\bigr\Vert _{\infty } \biggl[ \frac{b-a}{2} \bigl[ f^{(n-1)}(b)+f^{(n-1)}(a) \bigr] - \bigl[ f^{(n-2)}(b)-f^{(n-2)}(a) \bigr] \biggr] . $$
Here, the symbol \(L_{p} [ a,b ] \) (\(1\leq p<\infty \)) denotes the space of p-power integrable functions on the interval \([ a,b ] \) equipped with the norm
$$\Vert f\Vert _{p}= \biggl( \int_{a}^{b} \bigl\vert f ( t ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}}$$
and \(L_{\infty} [ a,b ] \) denotes the space of essentially bounded functions on \([ a,b ] \) with the norm
$$\Vert f\Vert _{\infty}=\mathop{\operatorname{ess\,sup}}_{t\in [ a,b ] }\bigl\vert f ( t ) \bigr\vert . $$
Now we state some Ostrowski-type inequalities related to the generalized majorization inequalities.
Theorem 9
Let all the assumptions of Theorem
1
hold. Furthermore, let
\((p,q)\)
be a pair of conjugate exponents, that is, \(1\leq p,q\leq\infty\), \(\frac{1}{p} +\frac{1}{q}=1\). Let
\(f^{(n)}\in L_{p} [ a,b ] \)
for some
\(n\in\mathbb{N}\), \(n>1\). Then we have
$$\begin{aligned}& \Biggl\vert \sum_{i=1}^{m}w_{i}f ( y_{i} ) -\sum_{i=1}^{m}w_{i}f ( x_{i} ) -\frac{1}{b-a}\sum_{i=1}^{m}w_{i} \Biggl[ \sum_{k=0}^{n-2}\frac{1}{k! ( k+2 ) !} \bigl[ f^{ ( k+1 ) } ( a ) \\& \quad\quad{} \times \bigl[ ( y_{i}-a ) ^{k+2}- ( x_{i}-a ) ^{k+2} \bigr] -f^{ ( k+1 ) } ( b ) \bigl[ ( y_{i}-b ) ^{k+2}- ( x_{i}-b ) ^{k+2} \bigr] \bigr] \Biggr] \Biggr\vert \\& \quad \leq\frac{1}{(n-1)!}\bigl\Vert f^{(n)}\bigr\Vert _{p}\Biggl\Vert \sum_{i=1}^{m}w_{i} \bigl( T_{n} ( y_{i},\cdot ) -T_{n} ( x_{i},\cdot ) \bigr) \Biggr\Vert _{q}. \end{aligned}$$
(3.12)
The constant on the right-hand side of (3.12) is sharp for
\(1< p\leq\infty\)
and the best possible for
\(p=1\).
Proof
Let us denote
$$\lambda(s)=\frac{1}{(n-1)!}\sum_{i=1}^{m}w_{i} \bigl[ T_{n} ( y_{i},s ) -T_{n} ( x_{i},s ) \bigr]. $$
Now, by using identity (2.1) and applying Hölder’s inequality we obtain
$$\begin{aligned}& \Biggl\vert \sum_{i=1}^{m}w_{i}f ( y_{i} ) -\sum_{i=1}^{m}w_{i}f ( x_{i} ) -\frac{1}{b-a}\sum_{i=1}^{m}w_{i} \Biggl[ \sum_{k=0}^{n-2}\frac{1}{k! ( k+2 ) !} \bigl[ f^{ ( k+1 ) } ( a ) \\& \quad\quad{} \times \bigl[ ( y_{i}-a ) ^{k+2}- ( x_{i}-a ) ^{k+2} \bigr] -f^{ ( k+1 ) } ( b ) \bigl[ ( y_{i}-b ) ^{k+2}- ( x_{i}-b ) ^{k+2} \bigr] \bigr] \Biggr] \Biggr\vert \\& \quad =\biggl\vert \int_{a}^{b} \lambda(s)f^{(n)}(s)\,ds\biggr\vert \leq\bigl\Vert f^{(n)} \bigr\Vert _{p}\Vert\lambda\Vert_{q}. \end{aligned}$$
(3.13)
For the proof of the sharpness of the constant \(( \int_{a}^{b}\vert \lambda(s)\vert ^{q}\,ds ) ^{1/q}\), let us find a function f for which the equality in (3.13) is obtained.
For \(1< p<\infty\) take f to be such that
$$f^{(n)}(s)=\operatorname{sgn}\lambda(s)\cdot\bigl|\lambda(s)\bigr|^{1/(p-1)}. $$
For \(p=\infty\), take f such that
$$f^{(n)}(s)=\operatorname{sgn}\lambda(s). $$
Finally, for \(p=1\), we prove that
$$ \biggl\vert \int_{a}^{b}\lambda(s)f^{(n)}(s)\,ds \biggr\vert \leq\max_{s\in [ a,b]}\bigl\vert \lambda(s)\bigr\vert \int_{a}^{b}f^{(n)}(s)\,ds $$
(3.14)
is the best possible inequality.
Function \(T_{n} ( x,\cdot ) \) for \(n=1\) has jump of −1 at point x. But for \(n\geq2\) it is continuous, and thus \(\lambda(s)\) is continuous. Suppose that \(\vert \lambda(s)\vert \) attains its maximum at \(s_{0}\in[ a,b]\). First we consider the case \(\lambda(s_{0})>0\). For ϵ small enough we define \(f_{\epsilon}(s)\) by
$$ f_{\epsilon}(s)= \textstyle\begin{cases} 0 , & a\leq s\leq s_{0},\\ \frac{1}{\epsilon n!}(s-s_{0})^{n} , & s_{0}\leq s\leq s_{0}+\epsilon,\\ \frac{1}{n!}(s-s_{0})^{n-1} , & s_{0}+\epsilon\leq s\leq b. \end{cases} $$
(3.15)
So, we have
$$\biggl\vert \int_{a}^{b}\lambda(s)f_{\epsilon}^{(n)}(s)\,ds \biggr\vert =\biggl\vert \int_{s_{0}}^{s_{0}+\epsilon} \lambda(s)\frac{1}{\epsilon }\,ds\biggr\vert =\frac{1}{\epsilon}\int _{s_{0}}^{s_{0}+\epsilon}\lambda(s)\,ds. $$
Now from inequality (3.14) we have
$$\frac{1}{\epsilon}\int_{s_{0}}^{s_{0}+\epsilon}\lambda(s)\,ds\leq \lambda (s_{0})\frac{1}{\epsilon}\int_{s_{0}}^{s_{0}+\epsilon}\,ds= \lambda(s_{0}). $$
Since
$$\lim_{\epsilon\rightarrow0}\frac{1}{\epsilon}\int_{s_{0}}^{s_{0}+\epsilon } \lambda(s)\,ds=\lambda(s_{0}) $$
the statement follows.
In the case \(\lambda(s_{0})<0\), we define \(f_{\epsilon}(s)\) by
$$ f_{\epsilon}(s)= \textstyle\begin{cases} \frac{1}{ n!}(s-s_{0}-\epsilon)^{n-1} , & a\le s \le s_{0},\\ -\frac{1}{\epsilon n!}(s-s_{0}-\epsilon)^{n} , & s_{0}\le s \le s_{0}+\epsilon,\\ 0 , & s_{0}+\epsilon\le s \le b, \end{cases} $$
(3.16)
and the rest of the proof is the same as above. □
The integral case of the above theorem can be given as follows.
Theorem 10
Let all the assumptions of Theorem
2
hold. Furthermore, let
\((p,q)\)
be a pair of conjugate exponents, that is, \(1\leq p,q\leq\infty\), \(\frac{1}{p} +\frac{1}{q}=1\). Let
\(f^{(n)}\in L_{p} [ a,b ] \)
for some
\(n\in\mathbb{N}\). Then we have
$$\begin{aligned}& \Biggl\vert \int_{\alpha}^{\beta}w ( t ) f\bigl(y(t)\bigr)\,dt- \int_{\alpha}^{\beta}w ( t ) f\bigl(x(t)\bigr)\,dt \\& \quad\quad{} -\frac{1}{b-a} \Biggl[ \sum_{k=0}^{n-2} \frac{1}{k! ( k+2 ) !}\int_{\alpha}^{\beta}w ( t ) \bigl[ f^{ ( k+1 ) } ( a ) \bigl[ \bigl( y(t)-a \bigr) ^{k+2}- \bigl( x(t)-a \bigr) ^{k+2} \bigr] \\& \quad\quad{} -f^{ ( k+1 ) } ( b ) \bigl[ \bigl( y ( t ) -b \bigr) ^{k+2}- \bigl( x ( t ) -b \bigr) ^{k+2} \bigr] \bigr]\,dt \Biggr] \Biggr\vert \\& \quad \leq\frac{1}{(n-1)!}\bigl\Vert f^{(n)}\bigr\Vert _{p}\biggl\Vert \int_{\alpha }^{\beta }w(t) \bigl( T_{n} \bigl( y(t),s \bigr) -T_{n} \bigl( x(t),s \bigr) \bigr)\,dt\biggr\Vert _{q}. \end{aligned}$$
(3.17)
The constant on the right-hand side of (3.17) is sharp for
\(1< p\leq\infty\)
and the best possible for
\(p=1\).
For our next two sections, we give here some constructions as follows. Under the assumptions of Theorem 3 using (2.4) and Theorem 4 using (2.7) we define the following functionals, respectively:
$$\begin{aligned}& \Lambda_{1}(f) = \sum_{i=1}^{m}w_{i}f ( y_{i} ) -\sum_{i=1}^{m}w_{i}f ( x_{i} ) -\frac{1}{b-a}\sum_{i=1}^{m}w_{i} \Biggl[ \sum_{k=0}^{n-2}\frac{1}{k! ( k+2 ) !} \bigl[ f^{ ( k+1 ) } ( a ) \\& \hphantom{\Lambda_{1}(f) =}{} \times \bigl[ ( y_{i}-a ) ^{k+2}- ( x_{i}-a ) ^{k+2} \bigr] -f^{ ( k+1 ) } ( b ) \bigl[ ( y_{i}-b ) ^{k+2}- ( x_{i}-b ) ^{k+2} \bigr] \bigr] \Biggr] , \end{aligned}$$
(A1)
$$\begin{aligned}& \Lambda_{2}(f)=\int_{\alpha}^{\beta}w ( t ) f \bigl(y(t)\bigr)\,dt-\int_{\alpha}^{\beta}w ( t ) f \bigl(x(t)\bigr)\,dt \\& \hphantom{\Lambda_{2}(f)=}{} -\frac{1}{b-a} \Biggl[ \sum_{k=0}^{n-2} \frac{1}{k! ( k+2 ) !}\int_{\alpha}^{\beta}w ( t ) \bigl[ f^{ ( k+1 ) } ( a ) \bigl[ \bigl( y(t)-a \bigr) ^{k+2}- \bigl( x(t)-a \bigr) ^{k+2} \bigr] \\& \hphantom{\Lambda_{2}(f)=}{} -f^{ ( k+1 ) } ( b ) \bigl[ \bigl( y ( t ) -b \bigr) ^{k+2}- \bigl( x ( t ) -b \bigr) ^{k+2} \bigr] \bigr]\,dt \Biggr] . \end{aligned}$$
(A2)