This study assessed recent real-world treatment patterns and estimated survival of a population-based cohort of older adults diagnosed with advanced STS in the US. More than 60% of patients were initially diagnosed at an earlier stage of disease and progressed to advanced STS with mean time to progression of 16.6 months. Consistent with previous studies [25,26,27], leiomyosarcoma, UPS and liposarcoma were the most common histological categories of STS in this study population.
Among patients initiating first-line systemic therapy, the most common regimen was docetaxel plus gemcitabine combination therapy (26.5%); the next most common first-line regimen (18.8%) was doxorubicin only. Both a recent medical record review study in the US [25] and the Sarcoma Treatment and Burden of Illness in North America and Europe chart review study [26] found that anthracyclines were used most commonly among first-line therapies (either alone or in combination) in younger patient populations. In this study of older adults, docetaxel plus gemcitabine was the most commonly used first-line therapy for most histologic categories except for vascular sarcomas (for which paclitaxel was most commonly used) and liposarcoma (for which doxorubicin was most commonly used). The use of paclitaxel for vascular sarcomas is consistent with evidence suggesting that vascular sarcomas may be relatively more responsive to taxanes and as such are recommended by NCCN guidelines [24, 28,29,30]. A relatively lower use of doxorubicin or related drugs was observed in this study, plausibly because the older age of the study population (mean age, 77.8 years) may increase concerns about adverse events, particularly doxorubicin-associated cardiotoxicity [27]. In the current study, 18.3% of the patients had a history of congestive heart failure and 25.8% of patients had a history of chronic pulmonary disease. Additionally, 69.2% of the patients in this study had hypertension that, along with age, is known to increase the risk of doxorubicin-associated cardiotoxicity [31, 32]. Prior research has addressed the issues of doxorubicin-based therapies and cardiovascular risk factors in the older adult population [33,34,35]. It is possible that the low use of doxorubicin observed in this study cohort is related to these issues, but the study design and available data do not allow for a thorough investigation of this potential relationship. Further understanding of physician preferences with regard to administration of doxorubicin-based therapy among older adult patients is needed to adequately comprehend observed treatment patterns. Knowledge about the appropriate care of the older patient remains limited, but data from this study begin to fill this gap and suggest directions for future research related to toxicity risk, disease progression, recurrence and survival outcomes, and their relationship with patient age in the setting of advanced STS.
As observed in other studies, gemcitabine was used most commonly during second-line therapy (either alone or in combination) [25, 26]. We also noted that dexrazoxane was not at all commonly used in this population among those who were treated with doxorubicin.
Approximately 62% of the study population received cancer-directed therapy. As compared to patients receiving cancer-directed therapy, patients receiving supportive care only had a mean age of 80.0 years (cancer-directed therapy: 76.5 years) at the time of being diagnosed with advanced disease and had a baseline comorbidity burden (mean CCI score) of 3.1 (cancer-directed therapy: 2.5), and 24.5% (cancer-directed therapy: 14.6%) had a history of congestive heart failure. Therefore, it seems likely that many of these patients may have been considered to not be candidates for chemotherapy, particularly with a cardiotoxic agent. The mean non-cancer CCI scores observed in this study for the overall population, patients receiving cancer-directed treatment, and patients receiving supportive care only are in line with those reported by Davis et al. among metastatic lung cancer patients [36].
Median overall survival in the entire study population was estimated to be less than 9 months. Patients who received supportive care lived only less than 3 months. The shorter survival of the group that received only supportive care, in addition to being related to not receiving anticancer treatment per se, is likely to be confounded by selection of patients for treatment who had a more favorable prognosis or better ability to tolerate treatment.
A study by Italiano et al. [7] (median age range 53–59 years), which included patients from the time frame of this study (i.e., 2002–2006), found that patients with synchronous or metachronous metastatic STS had an overall survival of 18 months from the time of metastatic diagnosis. Patients in the study by Italiano et al. [7] had relatively longer survival than those in this study, plausibly because patients in this study were considerably older. Similar to this study, survival did vary by histologic category in the study by Italiano et al. [7]. For example, patients with leiomyosarcoma, UPS, and nerve sheath sarcoma had a median survival of 12.9, 9.6, and 6.2 months, respectively, in this study and 19.4, 11.2, and 8.6 months, respectively, in the Italiano et al. [7] study.
An array of treatments (e.g. eribulin, olaratumab, pazopanib, trabectedin) became available for this population in the last decade [11, 13, 14, 37]; however, effectiveness of these treatments specifically among older adult patients with advanced STS is yet to established. Other treatments like oral cyclophosphamide plus prednisone [34] may also be feasible for older adult patients for whom treatment with doxorubicin may not be an option. Overall survival, progression-free survival, and response rates of patients with advanced STS may improve as these treatments will become part of routine care provided to this population.
This study is subject to several limitations inherent in analyses of Medicare claims data and the use of such data in studies of advanced cancer, in particular. For patients who were not initially diagnosed at the metastatic stage of the disease, ICD-9-CM diagnosis codes were used to identify evidence of metastatic disease during the follow-up period. However, the use of ICD-9-CM codes to identify metastatic disease has been shown to have sensitivity, specificity, and positive predictive value of less than 80%, and thus the use of ICD-9-CM diagnosis codes in the Medicare claims data may have resulted in inaccurate or under-identification of an advanced STS population [38, 39]. As described in the study methods, one of the criteria used to identify progression to metastatic disease was the initiation of systemic therapy at least 6 months after surgery. This criterion may have resulted in selection bias because patients who had disease progression but did not receive systemic therapy would have been omitted from the supportive care-only group. Although, the 6-month lag period after surgery was used to avoid interpreting adjuvant therapy as treatment for advanced disease, patients who progressed and received systemic therapy for advanced disease would have been omitted from the cancer-directed therapy group. Lines of therapy are not reported in claims data; therefore, an algorithm had to be defined to estimate the lines of therapy. This may have misclassified treatments by line of therapy, as the reasons for treatment changes were not available in the data. The Medicare Part D database was available for only a subset of the cohort (32.4%); however, only a small proportion of all chemotherapy (2%) claims were identified from the Medicare Part D database, so the risk of missing important treatment data is relatively low despite this limitation. An array of treatments (i.e., eribulin, olaratumab, pazopanib, trabectedin) became available for this population in the last decade, although these agents are not fully represented in the study dataset. Future research should evaluate the use and outcomes of these novel treatments in the older adult population. Finally, this study included only patients aged 65 years or older, and although SEER-Medicare data is representative of the US population 65 years and older for age and gender, participating SEER sites may not be representative with regard to distribution of race, income, urban residence, HMO enrollment as well as cancer mortality [15] and thus the results should not be generalized to the entire population of older adult patients with advanced STS.
Despite these limitations, this study documents real-world treatment patterns that may help inform providers, researchers, and policymakers about the care of older patients with STS in the US. As real-world data including new therapeutic options become available, our results provide a basis for analyzing changes in treatment patterns and outcomes over time. This study demonstrates that the prognosis is poor for older adult patients with advanced STS, highlighting the unmet medical need in this population.