Background

Dengue fever, the potentially deadly outcome of infection with a mosquito borne flavivirus (DENV, Flaviviridae, Flavivirus), is one of the most challenging public health problems in the Greater Mekong Subregion (GMS) composed of Cambodia, China, Myanmar, Thailand, Vietnam and Lao People’s Democratic Republic (PDR) [1, 2]. From 2009 to 2012, dengue was reported in all provinces in Lao PDR, except for Phongsaly and Huaphanh provinces in northern region [3]. All four serotypes of dengue flaviviruses (DENV1-4) now circulate in rural and urban areas in Lao PDR [3,4,5,6,7]. In Lao PDR, an extensive dengue outbreak, mostly attributed to serotype 3 (DENV3) in 2013, caused 44,098 cases and 95 deaths [8, 9]. Again in 2017, 9832 cases of dengue fever were reported in Lao PDR, including 14 deaths, with the most affected provinces being Vientiane Capital and Champasak [10]. Both Aedes (Stegomyia) aegypti (Linnaeus) and Aedes (Stegomyia) albopictus (Skuse, 1894) were suspected to have been involved in these epidemics [11, 12]. However, still there is no study proving their vector status in the country.

Aedes albopictus, the Asian tiger mosquito, is thought to be native to Southeast Asia [13]. In recent decades, Ae. albopictus has spread throughout the world and is now found on all continents except Antarctica [14,15,16]; it is considered one of the most invasive and widespread mosquito species in the world [14, 17]. Despite Ae. albopictus being considered a secondary vector of dengue and chikungunya (CHIKV, Togaviridae, Alphavirus) relative to Ae. aegypti [18], in some instances such as in central Africa, China and Mediterranean Europe [19,20,21] it can become the primary vector. Of note, several laboratory studies have shown that Ae. albopictus can be more competent at transmitting DENV and CHIKV than Ae. aegypti [22,23,24]. Furthermore, Ae. albopictus has been associated with the emergence of Zika virus from its native Africa, although this is still in early stages of investigation [25,26,27].

Although mosquito populations with different genetic makeup may differ in vector competence [28], there is currently no information about the population genetics of Ae. albopictus in Lao PDR. Information about genetic diversity and population structure can be a tool in the development of effective mosquito control programmes [29, 30]. Therefore, we obtained samples of Ae. albopictus from eight provinces from the northwest, northern, central and southern regions of Lao PDR including the two most affected provinces, Vientiane Capital and Champasak, and sequenced a fragment of the cytochrome c oxidase subunit 1 gene (cox1) mitochondrial (mt) DNA. First, we analyzed the genetic variability of samples from Lao PDR, then compared against other samples from China, Japan, Taiwan, Singapore, the USA, Italy [31] and Thailand to check the genetic relationships among them. Our primary aim was to increase our understanding of the population structure of Ae. albopictus in Laos in order to develop better strategies for dengue prevention and vector control in Lao PDR.

Methods

Mosquito collection and identification

The collections were carried out in eight localities from the northwest [Bokeo (BK), Luangnamtha (LN) and Xayabouly (XB) Provinces], northern [Luang Prabang (LP) Province], central [Vientiane prefecture (VC), Borikhamxay (BK) and Khammuane (KM) Provinces] and southern [Champasak (CH) Province] regions of Lao PDR (Fig. 1). Aedes albopictus larvae and pupae were collected between 2014 and 2016 from domestic containers (tanks and jars) and peri-domestic habitats (used tires, discarded containers, etc.), then carefully transferred into WhirlPak plastic bags (BioQuip, Rancho Dominguez, CA, USA) and sent to the insectaries in Vientiane for rearing (field generation, F0). Each mosquito population sample consisted of larvae and pupae collected from at least 10 breeding sites per locality to reduce the likelihood of re-sampling them. Female mosquitoes were then stored individually in a desiccated tube at − 80 °C until molecular analyses. All mosquitoes were morphologically identified as Ae. albopictus using available keys [32] and confirmed by comparison of cox1 barcode region sequences available on GenBank.

Fig. 1
figure 1

Collection information of Aedes albopictus in Lao PDR

DNA extraction and sequencing

Total genomic DNA was extracted from single whole mosquitoes using a NucleoSpin® Tissue kit (Macherey-Nagel, Duren, Germany) according to manufacturer’s instructions. The fragment of mtDNA cytochrome c oxidase subunit 1 (cox1) gene was amplified using two sets of primers, 1454F (5′-GGT CAA CAA ATC ATA AAG ATA TTG G-3′) and 2160R (5′-TAA ACT TCT GGA TGA CCA AAA AAT CA-3′); and 2027F (5′-CCC GTA TTA GCC GGA GCT AT-3′) and 2886R (5′-ATG GGG AAA GAA GGA GTT CG-3′), following the polymerase chain reaction (PCR) protocol explicitly detailed in Zhong et al. [31]. Aliquots of the PCR products were visualized on 1.5% agarose gels and successful amplifications were purified using ExosapIT® (USB Co, Cleveland, OH, USA). All sequencing reactions were carried out in both directions using an ABI Big Dye Terminator Kit v.3.1 (Applied Biosystems, Warrington, UK) and analyzed on an ABI Prism 3500xL—Avant Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) at the Institut Pasteur du Laos sequencing facilities in Vientiane.

Data analyses

The cox1 gene sequences were edited using Sequencher® version 5.4.6 (Gene Codes Corporation, Ann Arbor, MI, USA) and automatically aligned in Geneious v.9.1.6. [33].

The number of haplotypes (H), haplotype diversity (Hd), nucleotide diversity (π) and (K) average of nucleotide differences within each site were generated using DnaSP v.5.0 [34]. The pairwise FST was calculated to estimate population differentiation based on differences in haplotype frequencies, whereas Nei’s Nm estimated gene flow is based on GST [35] using Arlequin v.3.5 [36].

Analysis of molecular variance (AMOVA) was conducted to determine the distribution of genetic variation within and among populations using 1000 permutations implemented in Arlequin v.3.5 [36]. Additionally, a spatial analysis of molecular variance (SAMOVA) v.1.0 [37] was used to cluster the 1337-bp cox1 sequences into genetically and geographically homogeneous populations. SAMOVA generates F-statistics (FSC, FST, FCT), using the AMOVA approach, into K groups to maximize the between group variation. SAMOVA estimates were computed for K = 2–8, with 1000 simulated annealing steps from each of 100 sets of initial starting conditions. Isolation by distance (IBD) was checked using a Mantel tests [38]. IBD was estimated in GenAlEx v.6.5 [39, 40] between the genetic and geographical distances with 10,000 permutations.

The hypothesis of strict neutrality among Ae. albopictus populations from Lao PDR was examined using the statistics D [41] and Fu’s FS [42], calculated using DnaSP v.5.0 [34]. The mismatch distribution (simulated in Arlequin v.3.5) was performed to distinguish between a smooth unimodal distribution and a multimodal or ragged distribution [43,44,45]. Statistically significant differences between observed and simulated distributions were evaluated with the sum of square deviations (SSD) to reject the hypothesis of demographic expansion [46].

To make broader comparisons among haplotypes from Lao PDR and other geographical regions, we analyzed samples from Thailand and downloaded available data in GenBank from China, Taiwan, Japan, Singapore, Italy and the USA [31]. The parsimony network was performed using TCS network inference method [47] in Population Analysis with Reticulate Trees (PopART) [48]. We also checked the number of haplotypes, FST, Nm and AMOVA using the same methodology described earlier.

In addition, a Bayesian clustering algorithm implemented in the program STRUCTURE v.2.3 was used to investigate genetic structure of individuals. The program was run under varying assumptions on Hardy-Weinberg (HW) and linkage equilibriums [49], with ten independent runs performed for each value of K (K = 1 to 21). In this analysis, the most likely number of genetic clusters (K) in the dataset is determined without prior information of the sampling locations, and then assigns proportion of the ancestry of each individual into the different clusters implemented in the program. The method of Evanno et al. [50] was used to determine the most likely number of clusters. This approach uses an ad hoc quantity, based on the second rate of change of the likelihood function between successive values of K. Poterior probability values were estimated using a Markov Chain Monte Carlo (MCMC) method and 1,000,000 interactions of each chain following the 100,000 iteration burn-in period were performed, as recommended by Pritchard et al. [49]. We visualized the partitioning of clusters using the program DISTRUCT [51].

Results

Genetic diversity

Partial sequences of the mtDNA cox1 (1337-bp) were amplified from 172 specimens, representing populations from Lao PDR (n = 155) and Thailand (n = 17). No insertions, deletions or stop codons were detected across all samples, which minimizes the likelihood of pseudogene amplification.

A total of 44 haplotypes were identified among the Lao populations (Table 1); of these, 13 haplotypes (30%) were shared among Lao populations and 31 (70%) were unique to single Lao populations. When the data was combined with Zhong et al. [31] (H1–H66) and the Thailand samples, a total of 46 haplotypes were found. These newly identified haplotypes are H67–H112 and were deposited in GenBank under accession numbers MN080720–MN080765 (Table 1). Lao PDR sequences shared five haplotypes with Thailand, two haplotypes (H45 and H56) with the USA (California and Texas, respectively) and Thailand, and one haplotype (H46) with the USA (California) (Table 1).

Table 1 Haplotypes of Aedes albopictus based on the mtDNA cox1 marker

Zhong et al. [31] amplified a fragment of 1433-bp of the mtDNA cox1, and identified 66 haplotypes of Ae. albopictus in 6 different countries (Italy, Japan, Taiwan, China, Singapore and the USA; 12 populations). The trimmed fragment we used is 96-bp smaller (1337-bp) than that of Zhong et al. [31]; however, no polymorphic sites were included in the trimmed sequence. Therefore, when we trimmed all fragments to 1377-bp, we still have the same 66 haplotypes as Zhong et al. [31] and 46 new haplotypes were recognized, totaling 112 haplotypes (Table 1).

The average number of nucleotide differences in Ae. albopictus in Lao PDR populations ranged from 0.537 (LN) to 3.105 (KM), corresponding with the range of the nucleotide diversity (π) 0.00040 (LN) to 0.00232 (KM). Haplotype diversity (Hd) ranged from 0.416 ± 0.116 (mean ± SD) (LN) to 0.942 ± 0.029 (VC) (Table 2).

Table 2 Summary of haplotype and nucleotide diversity measures of the cox1 gene for Ae. albopictus in Lao PDR

The highest level of genetic differentiation in Lao PDR based on the fixation index FST was between LN and LP (FST = 0.33288, P ˂ 0.05). Gene flow (Nm) was > 1 among all populations, except LN and XB (Table 3). When analyzed all together including the samples of Zhong et al. [31], the highest FST was between LN (Luangnamtha, Lao PDR) and JS (Jiangsu, China) (FST = 0.610, P ˂ 0.05) (Additional file 1: Table S1).

Table 3 Pairwise differentiation (FST, below the diagonal), and gene flow (Nm, above the diagonal) among populations of Ae. albopictus in Lao PDR

Global AMOVA tests indicated a high proportion of the total genetic variance was attributable to within-population variation (85.98%), suggesting low and significant genetic structure among populations (FST = 0.14, P ≤ 0.001) in Lao PDR. When we added all samples including that of Zhong et al. [31], global AMOVA found a significant overall population structure in Ae. albopictus (FST = 0.43, P ≤ 0.001), with 56.8% of genetic variation found within-population and 43.2% among-populations. The spatial analysis of molecular variance (SAMOVA), based on mtDNA data, showed no genetically distinct population groups. Partitions of the sampling areas for each K value were not informative. FCT values presented a narrow range between 0.18 and 0.23. (Additional file 2: Figure S1). Mantel tests showed that genetic and geographical distances (Additional file 3: Table S2) among populations in Lao PDR do not support a pattern of isolation by distance (r = 0.0846, P = 0.1433).

Assessment of population expansion based on neutrality test resulted primarily in negative values but most were not statistically significant, with the exception of Tajima’s D for CH, and Fu’s Fs for BK, CH, LN and LP (Table 4). Mismatch distribution models revealed poor fit to equilibrium distribution (Additional file 4: Figure S2); both the sum of squared deviation (SSD) values (0.016, P = 0.29) and raggedness index (0.09) were not statistically significant in almost all the populations, except the SSD value for BO and CH and Rag for CH (Table 4), indicating further support for population expansion based on cox1 gene.

Table 4 Neutrality test and mismatch distribution of cox1 gene of Ae. albopictus in Lao PDR

Genetic relationships among haplotypes

The parsimony network showed that the genealogical relationships among the haplotypes differed by 4–9 mutational steps (Fig. 2) and can be divided into three Groups: Group 1 mainly contained haplotypes from China, and a number of haplotypes from Japan, Italy, Taiwan and the USA; Group 2 contained haplotypes from China, Japan, Italy, Taiwan, the USA, and 50% of the haplotypes in Singapore; and Group 3 contained haplotypes from Lao PDR, Thailand, the remaining 50% from Singapore, and three haplotypes shared with the USA. The most common haplotypes were 3 (n = 113) and 45 (n = 52) (Fig. 2, Table 2). Haplotype 3 was shared among populations from China, Taiwan, Japan, Italy and the USA, while H45 was shared among the USA, Thailand and all populations from Lao PDR (Fig. 2, Table 1).

Fig. 2
figure 2

Phylogenetic network of 112 mitochondrial haplotypes (1337 bp) of the cox1 gene in Ae. albopictus. Localities are indicated by different colors (bottom-right). The area of each circle is approximately proportional to the frequency of the haplotype. #Samples available in Genbank from Zhong et al. [31]. αSamples from Lao PDR

Genetic clustering of individuals

Bayesian inference implemented in STRUCTURE revealed that the optimal partitioning of all Ae. albopictus samples (China, Taiwan, Japan, Singapore, Italy, USA from Zhong et al. [31], Lao PDR and Thailand) was K = 8. The individuals analyzed from the 21 populations were assigned to eight clusters with a certain probability value (Fig. 3, Additional file 5: Table S3). Most individuals from Lao PDR and Thailand were represented in clusters 1 and 2, and partially in clusters 4 and 8, sharing with Singapore, Japan and the USA (California samples). Samples from China were mainly found in clusters 3, 6 and 7, sharing with USA and Italy, and cluster 5 included the highest proportion of individuals from the USA (New Jersey and Texas samples: 86 and 72%, respectively), as observed in Zhong et al. [31].

Fig. 3
figure 3

Pie charts representing the proportional membership of Ae. albopictus identified in Bayesian cluster analysis (optimal partitioning of all samples, K = 8). Abbreviations: China: GZ, Guangzhou; XM, Xiamen; JS, Jiangsu; Taiwan: TW, Xinzhu; Japan: JP, Nagazaki; Singapore: SG, Helios Block; Italy: IT, Trentino; USA: LA01, California; LA11, California; NJ, New Jersey; TX, Texas; and HW, Hawaii – are samples from Zhong et al. [31]; Lao PDR: BK, Borikhamxay; BO, Bokeo; CH, Champasak; KM, Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, Xayabouly; Thailand: TH, Thailand

Discussion

The barcoding mitochondrial gene, cox1, has been widely used to analyze genetic diversity in Ae. albopictus [31, 52,53,54,55,56,57,58,59]. In this study, we followed the recommendation of Goubert et al. [60] that reviewed the literature on the use of the cox1 for population genetic studies, and employed a longer mtDNA marker designed by Zhong et al. [31].

Genetic diversity in Ae. albopictus from Lao PDR

Overall, we detected very high haplotype diversity in Ae. albopictus in Lao PDR, with 44 haplotypes identified from only eight populations. Among them, 13 haplotypes were shared (Table 1), in some cases by all eight populations. Low and significant genetic structure (Table 3) were observed, supporting the finding of other studies [55, 57, 59, 61].

The higher and significant differentiation among LN (Luangnamtha) and other locations in Lao PDR (FST 0.126–0.371), except CH (Champasak), may be due to climate (Table 3). Indeed, while Lao PDR has a predominantly tropical climate, the mountainous topography and the extensive Mekong River network in the northern and southern regions, results in variation in average temperature conditions and creates significantly different microclimates that may be highly relevant to mosquito development. On the other hand, the Mantel test revealed no correlation between genetic and geographical distances, indicating no isolation by distance of Ae. albopictus in Lao PDR. Similar results were observed within countries [60, 62,63,64,65], except in Schmidt et al. [66]; they analyzed genetic structure of Ae. albopictus from 12 localities in China using single nucleotide polymorphism (SNPs) and found evidence for IBD.

Signs of recent expansion observed in Ae. albopictus across Lao PDR are evidenced by economic development, which is characterized by high rates of urbanization in the Association of South East Asian Nations (ASEAN) community. This has led to a better road infrastructure throughout the country and has increased connectivity between all the provinces, which has the potential to facilitate human-assisted movement of Aedes mosquitoes (SM, personal observation) and their pathogens [13, 67]. In addition, rubber plantations provided several potential breeding sites for Ae. albopictus including latex-collection cups [68, 69]. According to Tangena et al. [12], the risk of dengue infection in natural forests and rubber plantations is higher than in northern region villages in Luang Prabang Province. Aedes albopictus is highly adaptable and successfully spread from its preferred forested environments to different rural and urban habitats, which has increased its potential as a vector and, consequently, arboviruses transmission risk in these more populated areas.

Genetic relationship among Ae. albopictus in Lao PDR and the available haplotypes from other geographical regions and genetic clustering of individuals

When populations of Ae. albopictus were analyzed from many different geographical regions, three haplotypes were observed to be shared between Lao PDR and other countries. H45 and H46 were shared with the USA (California) and Thailand, and H56 with the USA (Texas). H45 and H46 are shared haplotypes from Los Angeles, California, where samples were collected in 2001. Similarly, Zhong et al. [31] observed those haplotypes were shared with Singaporean populations and were not found in their collection in 2011; hence, the authors suggested that only specimens from subtropical/temperate climates could have established successfully in the USA. In addition, the FST was lower when comparing Lao PDR with the 2001 California samples (0.093–0.323, P ≤ 0.05) than the ones collected 10 years later in 2011 (0.286–0.529, P ≤ 0.05) (Additional file 1: Table S1).

The phylogenetic network and the Bayesian cluster analyses corroborated the results from Zhong et al. [31]. Groups 1 and 2 (in the network analysis) and clusters 3, 5–7 (in the Bayesian analysis) included samples from temperate regions and most of group 3 and clusters 1, 2, 4, 8 (network and Bayesian analyses, respectively) included the majority of samples from tropical/subtropical regions (Figs. 2, 3). Allozyme studies have shown that populations of Ae. albopictus from Japan are likely distinct from the remaining samples in the world [70] and Southeast Asia (Borneo, peninsula Malaysia) and southern Asian populations (India, Sri Lanka) can both be differentiated from northern Asian populations (China, Japan) [71]. Worldwide mitogenome diversity of Ae. albopictus was studied and three major haplogroups were found; the first haplogroup was mostly distributed in tropical regions, the second in temperate regions and the third appeared to be important in the spread of Ae. albopictus from Asia [61]. A possible explanation for these differences is the presence of a photoperiodic diapause in Ae. albopictus from temperate regions [72,73,74], and absence of diapause among Ae. albopictus in tropical regions, such as in Brazil [72]. However, it is worth noting that the Singapore population represents a particular case in Southeast Asia. Its population is genetically connected both with tropical and temperate strains (Figs. 2, 3).

Although no study has performed a comprehensive analysis of the species’ full native range [60], the genetic differentiation of native Asian populations of Ae. albopictus may confer both north-south (Korea to Indonesia) and east-west (Japan to India) pattern of genetic differentiation [61]; our results partially support the pattern of north-south as in Battaglia et al. [61].

Overall, we observed significant population structure in Ae. albopictus (FST = 0.43, P ≤ 0.001). Similar results were observed in Zhong et al. [31] and Maynard et al. [75]. As mentioned, Zhong et al. [31] analyzed cox1 of Ae. albopictus from China, Taiwan, Japan, Singapore, Italy and the USA. Maynard et al. [75] using both microsatellite and mitochondrial markers observed significant relationship between genetic variability and geographical distance, but weak correlation in Ae. albopictus of Indo-Pacific regions.

Laotian Ae. albopictus populations were found to be very genetically related to the tropical Thailand strain. An allozyme study suggested that populations of Ae. albopictus in the eastern USA possibly originated from temperate Asian regions [67], while mtDNA variations revealed that populations in Represa do Congo and Sao Luis in Brazil formed a lineage paraphyletic to tropical Southeast Asian lineages, such as Cambodia, Vietnam, Thailand [52, 76] and likely Lao PDR.

Conclusions

To our knowledge, this study represents the first genetic analysis of Ae. albopictus in Lao PDR. Laotian Ae. albopictus are genetically related to populations from tropical/subtropical regions. The high polymorphism but shallow population structure across Lao PDR and signs of a recent population expansion in Ae. albopictus may be the result of recent economic development that facilitates human-mediated movement of Ae. albopictus. We suggest that extensive movement and likely common reintroductions of Ae. albopictus to treated sites represent a major challenge to dengue control in Lao PDR.