Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
Article
PubMed
Google Scholar
Bai X, Yi M, Dong B, Zheng X, Wu K. The global, regional, and national burden of kidney cancer and attributable risk factor analysis from 1990 to 2017. Exp Hematol Oncol. 2020;9:27. https://doi.org/10.1186/s40164-020-00181-3.
Article
PubMed
PubMed Central
Google Scholar
Hu F, Zeng W, Liu X. A gene signature of survival prediction for kidney renal cell carcinoma by multi-omic data analysis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20225720.
Article
PubMed
PubMed Central
Google Scholar
Hsieh JJ, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009. https://doi.org/10.1038/nrdp.2017.9.
Article
PubMed
PubMed Central
Google Scholar
Dixon SJ. Ferroptosis: bug or feature? Immunol Rev. 2017;277:150–7. https://doi.org/10.1111/imr.12533.
CAS
Article
PubMed
Google Scholar
Yagoda N, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:864–8. https://doi.org/10.1038/nature05859.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017;21:648–57. https://doi.org/10.1111/jcmm.13008.
CAS
Article
PubMed
Google Scholar
Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 1861;1893–1900:2017. https://doi.org/10.1016/j.bbagen.2017.05.019.
CAS
Article
Google Scholar
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–209. https://doi.org/10.1007/s00018-016-2194-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xie Y, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79. https://doi.org/10.1038/cdd.2015.158.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharma P, Shimura T, Banwait JK, Goel A. Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of beta-catenin/Wnt-signaling pathways in colorectal cancer. Carcinogenesis. 2020;41:1385–94. https://doi.org/10.1093/carcin/bgaa090.
CAS
Article
PubMed
PubMed Central
Google Scholar
Markowitsch SD, et al. Artesunate inhibits growth of sunitinib-resistant renal cell carcinoma cells through cell cycle arrest and induction of ferroptosis. Cancers. 2020. https://doi.org/10.3390/cancers12113150.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43. https://doi.org/10.1186/s12943-020-01168-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fearnhead HO, Vandenabeele P, Vanden Berghe T. How do we fit ferroptosis in the family of regulated cell death? Cell Death Differ. 2017;24:1991–8. https://doi.org/10.1038/cdd.2017.149.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu P, et al. Feasibility of cultivation of Spinibarbus sinensis with coconut oil and its effect on disease resistance (nonspecific immunity, antioxidation and mTOR and NF-kB signaling pathways). Fish Shellfish Immunol. 2019;93:726–31. https://doi.org/10.1016/j.fsi.2019.06.052.
CAS
Article
PubMed
Google Scholar
Su Y, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020;483:127–36. https://doi.org/10.1016/j.canlet.2020.02.015.
CAS
Article
PubMed
Google Scholar
Xie B, Guo Y. Molecular mechanism of cell ferroptosis and research progress in regulation of ferroptosis by noncoding RNAs in tumor cells. Cell Death Discov. 2021;7:101. https://doi.org/10.1038/s41420-021-00483-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Iyer MK, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208. https://doi.org/10.1038/ng.3192.
CAS
Article
PubMed
PubMed Central
Google Scholar
Han P, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514:102–6. https://doi.org/10.1038/nature13596.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang X, et al. Long non-coding RNA (lncRNA) CRNDE regulated lipopolysaccharides (LPS)-induced MRC-5 inflammation injury through targeting MiR-141. Med Sci Monit. 2020;26: e920928. https://doi.org/10.12659/MSM.920928.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhai W, et al. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ. 2017;24:1502–17. https://doi.org/10.1038/cdd.2017.74.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xiao ZD, et al. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun. 2017;8:783. https://doi.org/10.1038/s41467-017-00902-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong JS, Wu B, Jiang B. LncRNA SNHG7 promotes the proliferation and inhibits apoptosis of renal cell cancer cells by downregulating CDKN1A. Eur Rev Med Pharmacol Sci. 2019;23:10241–7. https://doi.org/10.26355/eurrev_201912_19661.
Article
PubMed
Google Scholar
You BH, et al. HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proc Natl Acad Sci USA. 2019;116:24620–9. https://doi.org/10.1073/pnas.1912126116.
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Y, et al. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat Commun. 2020;11:1000. https://doi.org/10.1038/s41467-020-14802-2.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mou Y, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34. https://doi.org/10.1186/s13045-019-0720-y.
Article
PubMed
PubMed Central
Google Scholar
Porta C, et al. The adjuvant treatment of kidney cancer: a multidisciplinary outlook. Nat Rev Nephrol. 2019;15:423–33. https://doi.org/10.1038/s41581-019-0131-x.
Article
PubMed
Google Scholar
Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008;34:193–205. https://doi.org/10.1016/j.ctrv.2007.12.001.
Article
PubMed
Google Scholar
Turajlic S, Swanton C, Boshoff C. Kidney cancer: the next decade. J Exp Med. 2018;215:2477–9. https://doi.org/10.1084/jem.20181617.
CAS
Article
PubMed
PubMed Central
Google Scholar
Requena DO, Garcia-Buitrago M. Molecular insights into colorectal carcinoma. Arch Med Res. 2020;51:839–44. https://doi.org/10.1016/j.arcmed.2020.09.014.
CAS
Article
PubMed
Google Scholar
Lu D, et al. ACADSB regulates ferroptosis and affects the migration, invasion, and proliferation of colorectal cancer cells. Cell Biol Int. 2020;44:2334–43. https://doi.org/10.1002/cbin.11443.
CAS
Article
PubMed
Google Scholar
Wang Q, et al. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp Cell Res. 2021;399: 112453. https://doi.org/10.1016/j.yexcr.2020.112453.
CAS
Article
PubMed
Google Scholar
Huang HX, et al. TFAP2A is a novel regulator that modulates ferroptosis in gallbladder carcinoma cells via the Nrf2 signalling axis. Eur Rev Med Pharmacol Sci. 2020;24:4745–55. https://doi.org/10.26355/eurrev_202005_21163.
Article
PubMed
Google Scholar
Wang X, et al. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis. Toxicol Appl Pharmacol. 2021;410: 115363. https://doi.org/10.1016/j.taap.2020.115363.
CAS
Article
PubMed
Google Scholar
Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 2020;260: 118305. https://doi.org/10.1016/j.lfs.2020.118305.
CAS
Article
PubMed
Google Scholar
Mao C, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484–96. https://doi.org/10.1158/0008-5472.CAN-17-3454.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang Y, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging. 2020;12:9085–102. https://doi.org/10.18632/aging.103176.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang M, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019;26:2329–43. https://doi.org/10.1038/s41418-019-0304-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gai C, et al. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11:751. https://doi.org/10.1038/s41419-020-02939-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Chu K, Zheng C, Ren L, Tian R. Pseudogene DUXAP8 promotes cell proliferation and migration of hepatocellular carcinoma by sponging MiR-490-5p to induce BUB1 expression. Front Genet. 2020;11:666. https://doi.org/10.3389/fgene.2020.00666.
CAS
Article
PubMed
PubMed Central
Google Scholar
Du C, Wang HX, Chen P, Chen CH. STAT3-induced upregulation of lncRNA DUXAP8 functions as ceRNA for miR-577 to promote the migration and invasion in colorectal cancer through the regulation of RAB14. Eur Rev Med Pharmacol Sci. 2019;23:6105–18. https://doi.org/10.26355/eurrev_201907_18424.
CAS
Article
PubMed
Google Scholar
Yin D, Hua L, Wang J, Liu Y, Li X. Long non-coding RNA DUXAP8 facilitates cell viability, migration, and glycolysis in non-small-cell lung cancer via regulating HK2 and LDHA by inhibition of miR-409-3p. Onco Targets Ther. 2020;13:7111–23. https://doi.org/10.2147/OTT.S243542.
CAS
Article
PubMed
PubMed Central
Google Scholar
He W, Yu Y, Huang W, Feng G, Li J. The pseudogene DUXAP8 promotes colorectal cancer cell proliferation, invasion, and migration by inducing epithelial-mesenchymal transition through interacting with EZH2 and H3K27me3. Onco Targets Ther. 2020;13:11059–70. https://doi.org/10.2147/OTT.S235643.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen J, Lou W, Ding B, Wang X. Overexpressed pseudogenes, DUXAP8 and DUXAP9, promote growth of renal cell carcinoma and serve as unfavorable prognostic biomarkers. Aging. 2019;11:5666–88. https://doi.org/10.18632/aging.102152.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang T, et al. Long non-coding RNA DUXAP8 enhances renal cell carcinoma progression via downregulating miR-126. Med Sci Monit. 2018;24:7340–7. https://doi.org/10.12659/MSM.910054.
CAS
Article
PubMed
PubMed Central
Google Scholar
He RQ, et al. Prediction of clinical outcome and survival in soft-tissue sarcoma using a ten-lncRNA signature. Oncotarget. 2017;8:80336–47. https://doi.org/10.18632/oncotarget.18165.
Article
PubMed
PubMed Central
Google Scholar
Su Y, et al. Construction of competitive endogenous RNA network and verification of 3-Key LncRNA signature associated with distant metastasis and poor prognosis in patients with clear cell renal cell carcinoma. Front Oncol. 2021;11: 640150. https://doi.org/10.3389/fonc.2021.640150.
Article
PubMed
PubMed Central
Google Scholar
Cao W, Zhang HF, Ding XL, Zhu SZ, Zhou GX. The progression of pancreatic cancer cells is promoted by a long non-coding RNA LUCAT1 by activating AKT phosphorylation. Eur Rev Med Pharmacol Sci. 2021;25:738–48. https://doi.org/10.26355/eurrev_202101_24635.
CAS
Article
PubMed
Google Scholar
Liu HZ, et al. LncRNA LUCAT1 promotes proliferation of ovarian cancer cells by regulating miR-199a-5p expression. Eur Rev Med Pharmacol Sci. 2020;24:1682–7. https://doi.org/10.26355/eurrev_202002_20342.
Article
PubMed
Google Scholar
Chen Y, et al. Downregulation of long noncoding RNA LUCAT1 suppresses the migration and invasion of bladder cancer by targeting miR-181c-5p. Biomed Res Int. 2020;2020:4817608. https://doi.org/10.1155/2020/4817608.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zheng Z, et al. Long non-coding RNA LUCAT1 promotes proliferation and invasion in clear cell renal cell carcinoma through AKT/GSK-3beta signaling pathway. Cell Physiol Biochem. 2018;48:891–904. https://doi.org/10.1159/000491957.
CAS
Article
PubMed
Google Scholar
Xiao H, et al. Long non-coding RNA Lucat1 is a poor prognostic factor and demonstrates malignant biological behavior in clear cell renal cell carcinoma. Oncotarget. 2017;8:113622–34. https://doi.org/10.18632/oncotarget.21185.
Article
PubMed
PubMed Central
Google Scholar
He HT, et al. Biomarker and competing endogenous RNA potential of tumor-specific long noncoding RNA in chromophobe renal cell carcinoma. Onco Targets Ther. 2016;9:6399–406. https://doi.org/10.2147/OTT.S116392.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Yan K, Wang L, Bi J. Genome instability-related long non-coding RNA in clear renal cell carcinoma determined using computational biology. BMC Cancer. 2021;21:727. https://doi.org/10.1186/s12885-021-08356-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Khadirnaikar S, et al. Immune associated LncRNAs identify novel prognostic subtypes of renal clear cell carcinoma. Mol Carcinog. 2019;58:544–53. https://doi.org/10.1002/mc.22949.
CAS
Article
PubMed
Google Scholar
Qi Y, et al. Tumor-infiltrating CD39(+)CD8(+) T cells determine poor prognosis and immune evasion in clear cell renal cell carcinoma patients. Cancer Immunol Immunother. 2020;69:1565–76. https://doi.org/10.1007/s00262-020-02563-2.
CAS
Article
PubMed
Google Scholar