The aim of this retrospective study was to evaluate the biologic response of dogs with inoperable, metastatic, or recurrent PCs to standard toceranib treatment. Beyond surgical removal, which is the treatment of choice, information about adjuvant therapy is lacking. The best treatment practices for inoperable, recurrent, or metastatic tumors is also unknown. Based on this limited case series, it appears that toceranib may have biological activity in dogs with microscopic and macroscopic PCs (primary or metastatic disease), and that toceranib might be a reasonable treatment option for owners who are hesitant to pursue surgery, for tumors that are not amenable to surgical removal, and for dogs with distant metastatic disease.
Pheochromocytomas in humans and dogs are clinically similar. Optimal treatment centers on surgical removal, with limited treatment options for inoperable tumors, those that are metastatic, and those that are recurrent. In humans, intensive chemotherapy, radiation therapy, and radiopharmaceutical agents (131I-metaiodobenzylguanidine) result in palliation of symptoms, but do not have an impact on survival [16]. Tyrosine kinase inhibitors that target c-KIT, FLT3, RET, VEGFR 1 and 2, or PDGFRβ appear to have the best biological response, reported to be around 60% [16, 17, 19, 20].
In humans, hereditary germline mutations and mutations in the von Hippel-Lindau (VHL) gene lead to the development of multiple neuroendocrine tumors including PCs [17]. An abnormally functioning VHL gene allows the activation of hypoxia-inducible transcription factors (HIF) which in turn promotes cell growth, angiogenesis, cell survival, and activation of VEGF and PDGF [33]. Similarly, mutations in succinate dehydrogenase (SDH) subunits B and D lead to the activation of HIF and the development of aggressive PCs [1]. Blockade of these mutations with small molecule inhibitors such as sunitinib via the VEGFR cell signaling pathway have led to improved quality of life, tumor size reduction, and control of PC-induced clinical signs such as hypertension [17].
One study has evaluated canine PCs, and the related paraganglioma, for SDH mutations. In that study 50% of PCs (3/6) had germline mutations in SDH, indicating that the disease may have some genetic similarities to humans [34]. Canine VHL mutations have been evaluated in canine renal carcinoma [35], but not yet in PCs, to the authors’ knowledge. However, due to the evidence of SDH mutations and similar pathogenesis, it seems reasonable to conclude that human and canine PCs may be similar in their development, and thus treatment with similar TKIs blocking the VEGFR pathway may offer a therapeutic advantage for our canine patients.
Despite these similarities, the reported treatment of PCs in dogs has been largely limited to surgical removal. One case report describes the use of the radiopharmaceutical 131I-metaiodobenzylguanidine for an inoperable PC in a Yorkshire terrier [36]. 131I-metaiodobenzylguanidine is an alkyl-guanidine derivative with a molecular structure similar to norepinephrine. Selective uptake by a PC will occur after intravenous administration. The dog experienced stable disease for one and a half months after the first injection, but five months later developed progressive disease. A second injection was administered but the patient died three weeks later, likely due to compression-induced bowel ischemia [32]. To the authors’ knowledge, there are no reported studies of chemotherapy or toceranib for the treatment of canine PCs.
Toceranib phosphate is an oral TKI approved for the use in dogs with Patnaik grade II or III, recurrent, cutaneous mast cell tumors with or without regional lymph node involvement. However, it appears to have efficacy against multiple tumors types, including various neuroendocrine tumors [30]. It is known to block multiple receptors including VEGFR and PDGFR [21] that stimulate angiogenesis, a known driver of human PCs.
Three dogs developed grade 1 or 2 clinical toxicities, which is in keeping with the previously reported toxicity rate for toceranib of 77.6% [30]. In addition, the toxicities observed, such as diarrhea, decreased appetite, lameness/muscle weakness, proteinuria, and hypertension, were those previously associated with toceranib [30, 32]. Neutropenia was not reported in this group of dogs. Two dogs had effects that were severe enough to warrant discontinuation of toceranib, and an additional patient required a significant dose reduction due to grade 3 proteinuria. In a recent study evaluating the use of toceranib in solid tumors, 20% of patients required a drug holiday or dose reduction, although this reduction did not appear to affect efficacy [37]. The number of dogs in this study that required discontinuation of treatment was much higher, but that is likely due to low patient numbers and lack of statistical power.
Two dogs developed hypertension, one of which was the same dog that developed grade 3 proteinuria. Hypertension is a known side effect of toceranib and has previously been reported to occur in 37% of treated dogs [32]. Hypertension is also a well-known side effect in humans treated with sunitinib. In a systematic review of the side effects associated with TKIs for the treatment of gastrointestinal stromal tumors, which inherently should not cause hypertension like PCs, 36% of human patients developed hypertension while on sunitinib [38]. In addition, in a study of humans with PC and paragangliomas treated with sunitinib, 82% had hypertension at presentation, and 35% had exacerbation of their hypertension while on sunitinib [17]. The underlying pathogenesis of TKI-induced hypertension is unknown. Prevailing theories include: (1) VEGF blockade, which prevents nitric oxide synthetase production of nitric oxide, allowing endothelin driven vasoconstriction; (2) decreased VEGF which may remodel capillaries and lead to endothelial dysfunction; or perhaps (3) TKIs may induce tumor cell apoptosis, leading to release of stored catecholamines and thus hypertension [39]. Recently, it has been determined that the development of hypertension while on a TKI is a biomarker of efficacy in some human patients treated with sunitinib [40]. In the current study, the two dogs that developed hypertension after starting treatment with toceranib both had a prolonged PFI (28 weeks and 61 weeks, respectively), and include the one dog that had a PR. One could make the argument that the development of hypertension may infer a more robust and durable response to toceranib.
There are many limitations to the current study due to its retrospective nature and small patient numbers. Histopathologic confirmation of a PC diagnosis was not obtained in all dogs. However, this is often the case in practice as a presurgical presumptive diagnosis of PC is frequently based on clinical signs and abdominal imaging alone [1, 2, 8]. The addition of urine normetanephrine/creatinine ratio measurement may aid in the diagnosis of pheochromocytoma, allowing for appropriate targeted therapy. However, sensitive and specific reference ranges have not been established to confirm the diagnosis of a PC in all clinical situations [23,24,25,26,27]. In addition, this diagnostic is not readily available at most laboratories (available, to the authors’ knowledge, through Marshfield Labs, ARUP Labs, and some local human hospitals). Similarly, metastatic disease, although suspected in several dogs, was not confirmed at the time of development or on necropsy. In addition, the natural course of this cancer in these dogs prior to diagnosis and the impact of toceranib on that natural progression, is unknown.
One dog received metronomic cyclophosphamide in addition to the toceranib. Although cyclophosphamide is used to treat humans with PC in a combination protocol with vincristine and dacarbazine, use as a single agent has not been reported [41]. In addition, low-dose metronomic cyclophosphamide (used in the dog reported herein), has not been evaluated for efficacy in human or canine PC. The impact of the addition of cyclophosphamide on this dog’s outcome is unknown, but may have positively contributed to the stable disease observed (dog 5). Therefore, given these caveats, it is impossible to definitively conclude that toceranib has clinical benefit for canine PCs.