Background

The Andes uplift and the formation of the Amazon Basin promoted species diversification via vicariance and/or dispersal which may be associated with climatic oscillations. Many examples from multiple organisms show the effect of such geological events in species differentiation [1,2,3,4,5,6], but only a handful show the role of geomorphology and climatic variations in the diversification of species from the seasonal dry tropical forest (SDTF) [7,8,9]. In tropical Americas, this ecosystem includes disjunct patches characterized by relatively low rainfall and high climatic seasonality [8, 10].

Species diversification in SDTF may be the result of these dry forest patches being intermittently connected during cold and dry periods in the middle and late Pleistocene, thus promoting species dispersal and/or genetic connectivity between isolated lineages ([8, 11]; the Pleistocene Arc hypothesis). Alternatively, such diversification may be due to genetic differentiation in allopatry, that could either be coupled or not with occasional long distance dispersal events [12,13,14,15]. For example, the diversification of geckos of the genus Phyllopezus was not influenced by Pleistocene climatic oscillations, but show a high phylogenetic structure associated with Miocene geomorphology [16]. In contrast, divergence in birds of the genus Phacellodomus and arthropods such as Nephila or Drosophila gouveai seems to be a consequence of Pleistocene climatic variation [11, 17, 18]. Also, studies in plants suggest that a combination of both climatic and geological changes were important for their diversification [9, 19, 20]. However, studies on the matter are scarce, and more evidence is needed to understand the evolutionary history of species inhabiting STDF [8].

The genus Psammolestes belongs to the subfamily Triatominae that excels between the subfamilies of Reduviidae due to their hematophagous behavior, but specially for being vectors of Trypanosoma cruzi [21] (Kinetoplastida, Trypanosomatidae), which causes the Chagas disease [22]. As Chagas disease has no effective treatment (e.g. vaccine), vector control strategies arise as alternatives to prevent and control the spread of not only the Chagas disease, but other tropical diseases as well [23,24,25]. The establishing of successful vector control strategies could benefit from a deep understanding of the vector’s biology, ecology, and evolution [26,27,28].

The genus Psammolestes (Reduviidae: Triatominae: Rhodniini) occurs in SDTF in apparent association with nests of Furnariidae birds [29,30,31,32,33]. This genus comprises three species, P. arthuri (Pinto, 1926), P. tertius (Lent & Jurberg, 1965) and P. coreodes (Bergroth, 1911), whose ecology and behavior remain largely unknown [31]. Psammolestes arthuri occurs across the eastern plains of Colombian and Venezuela, P. tertius is found in coastal regions near the Cerrado, Caatinga and the Mata Atlantica in Brazil, and P. coreodes distributes across the Chaco in Argentina, Paraguay, Bolivia, and Brazil [26, 34]. These species do not differ in karyotype [35,36,37], but are recognized based on morphological traits [31]. For example, P. arthuri is the most easily recognizable species based on a smooth and shiny cuticle in the thorax and the head, lack of cervical constriction, long hairs restricted to the apex of the second and third segments of the stylet, an anterolateral pronotal margin distinctly extended, and male genitalia with basal plate struts completely fused [31]. In addition, P. tertius and P. coreodes are recognized based on male genitalia morphology, anteocular distance, and post-ocular distance. Specifically, P. tertius has basal plate struts broadly S-shaped, while those of P. coreodes are hook shaped. Also, the anteocular distance in P. tertius is at least 2× higher than its post-ocular distance, while that of P. coreodes is always less than 2× [31, 38]. Additionally, recent evidence reported the existence of hybrid inviability in controlled crosses between P. tertius and P. coreodes [38].

Species of Psammolestes were initially grouped into the tribe Psammolestini and separated from Rhodniini [26, 39], but later they were placed back within Rhodniini because they occur in arboreal habitats and have protuberances behind the eyes [31]. Nonetheless, Psammolestes and Rhodnius were kept as separate genera as the femur and head of Psammolestes are wider and shorter than those of Rhodnius [31]. These taxonomic classifications have been tested at the molecular level, and it is well known that Rhodnius is paraphyletic compared to Psammolestes [28, 40,41,42,43,44]. However, only one molecular study on the phylogenetic relationships in the Triatominae subfamily included the three species of Psammolestes, and found P. arthuri sister to P. tertius and this clade sister to P. coreodes [45]. These findings suggest that Psammolestes is a monophyletic clade within the prolixus group [45].

Additionally, multiple studies have revealed a major role of niche conservatism in the diversification of the subfamily Triatominae [46,47,48,49]. For example, at the macroevolutionary scale, Ceccarelli et al. [47] found that tropical species of Triatominae share the same niche despite their phylogenetic differences, while niche conservatism in temperate species is due to shared evolutionary history. Nevertheless, the effect of niche conservatism in the diversification of species of Psammolestes remains to be tested. This is especially relevant as P. arthuri is a tropical species but P. tertius and P. coreodes have temperate distributions.

In this study, we used phylogenetic, population genetics analyses, and niche modeling to test the existence of discrete lineages within Psammolestes and investigate the role of the niche in maintaining these species. Our hypothesis was that the Amazon basin acts as a dispersion barrier that separates tropical and subtropical-temperate species thus suggesting a major role of geomorphology events in the divergence of Psammolestes. This scenario predicts that: (i) P. coreodes and P. tertius are most closely related to each other than they are to P. arthuri, and (ii) species differentiation proceeds despite niche conservatism. The understanding of the biotic and abiotic processes that shape vector species diversity of tropical diseases, as well as, the factors involved in their speciation process are essential for the settlement of adequate strategies for disease transmission control [23].

Results

Molecular phylogenetics

The resulting ML gene topologies were not concordant. The CYTB and PJH topologies (see Additional files 1 and 2) recovered P. coreodes and P. tertius as sister monophyletic clades, while 28S, CISP, LSM, TRNA and UPCA topologies (see Additional files 3, 4, 5, 6 and 7) did not recover them as reciprocally monophyletic. However, all the seven gene topologies showed P. arthuri as a well-supported monophyletic clade. Topological discordance is likely due to differences in coalescence times between loci, where the process of lineage sorting occurred faster in genes with small population size [50]. Alternatively, gene flow could explain allele sharing (see below: “Assessment of different demographic models”).

Our concatenated ML phylogenetic reconstruction recovered P. coreodes and P. tertius as sister species, and this clade was sister to P. arthuri. Overall, the three Psammolestes species were monophyletic with strong node supports (Fig. 1). Also, a multilocus Bayesian species coalescent (MSC) analysis revealed a species tree with the same topology than the ML tree with posterior probabilities > 0.96 (Additional file 8).

Fig. 1
figure 1

Maximum Likelihood phylogenetic reconstruction and geographical barrier test based on the seven molecular loci used in this study. A Phylogenetic reconstruction with the ML algorithm based on the seven molecular loci used in this study. Bootstrap values on the internal nodes are shown in the following order: SH-aLRT/aBayes/ultrafast bootstrap support. Only nodes with bootstrap values higher than 60 are shown. B Geographical barrier test (Monmonier’s algorithm) with the thick black line representing the main geographical barrier, and thin lines being the Voronoi tessellation and Delaunay triangulation

Finally, the mtDNA tree estimated by Bayesian inference also recovered the same relationships between the Psammolestes species with high posterior probabilities (see Additional file 9). Our dated phylogeny suggests that P. arturi diverged from the ancestor of P. coreodes and P. tertius 4.84 Mya (95% HPD interval = 1.32–10.38 Mya; see Additional file 9). We also found that the subtropical tempered species diverged 3.75 Mya (95% HPD interval = 0.92–8.15 Mya; see Additional file 9).

Species delimitation tests

Three out of four models tested in BPP with nDNA loci recovered the known Psammolestes species. The only exception was the model ‘deep divergence and large population size’, which delimited two species: (i) P. arthuri, and (ii) P. coreodes + P. tertius (Table 1). Also, mtDNA delimited three species in the four models tested (Table 1). Consistently, mPTP strongly supported (ASV = 0.87) the same three independent lineages (see Additional file 10).

Table 1 Species delimitation by Bayesian phylogenetics and phylogeography program

Population genetics analyses

Population substitution rate (θ) and nucleotide diversity (π) values were similar among the three Psammolestes species in each of the seven loci (Table 2). The three species showed signatures of population expansion in some loci, but this pattern was stronger and more consistent in P. arthuri. Consistently, haplotype networks displayed the typical star-like pattern where central haplotypes are coupled with multiple haplotypes with singletons (Fig. 2). In agreement with the haplotype networks, we detected stronger genetic differentiation between P. arthuri and both P. coreodes and P. tertius (see Additional files 11, 12, 13, 14, 15, 16 and 17), whereas genetic differences were weaker between P. coreodes and P. tertius. The structure algorithm recovered three clusters that were concordant with the three Psammolestes species (Fig. 3, see Additional files 10 and 18), although some P. tertius individuals showed shared ancestry with P. coreodes. Additionally, we found that isolation by distance contributed to the genetic structure observed in our data (Fig. 1B, Additional files 19, 20). This is mainly due to the geographical distance of P. arthuri compared to the other two species. Consequently, Monmonier’s algorithm [51] supports a geographical break that coincides with the Amazon basin (see Additional files 1, 2, 3, 4, 5, 6 and 7) splitting tropical species (P. arthuri) from temperate species (P. coreodes and P. tertius). This geographic break was recovered in all genes, suggesting that the tropical P. arthuri diverged from the other two temperate species in allopatry (Additional files 1, 2, 3, 4, 5, 6 and 7).

Table 2 Population genetics summary statistics for each species per locus
Fig. 2
figure 2

Haplotype networks obtained from the molecular data of the markers. A 28S, B CISP, C CYTB, D LSM, E PJH, F TRNA, G UPCA

Fig. 3
figure 3

Population structure analysis plot values using STRUCTURE. Graphical output from the distruct software plotted using K = 3 and the matrix of aligned Q values from populations and individuals obtained from CLUMPP. Input sequences were organized from left to right in the following order: P. arthuri, P. tertius, and P. coreodes. Each bar represents an individual, and the color of the bar represents the likelihood of that individual of belonging to a population. Pink color represents the likelihood of belonging to P. arthuri, blue to P. tertius, and yellow to P. coreodes

Assessment of different demographic models

Our results suggest that the demographic model of ‘divergence without gene flow’ fitted our data better than other models with unidirectional or bidirectional gene flow. However, this scenario shows some uncertainty (wAIC = 0.30) as AIC values were not considerable different between models (see Additional files 18 and 21).

Environmental niche modeling

We found that the ensemble model fitted better than each independent algorithm (ROC > 0.95). This model showed different non-overlapping suitable areas for each species of Psammolestes (Fig. 4). Overall, areas with higher occurrence probability for the three species were restricted to dry environments such as tropical savannas and the amazon basin showed the lowest suitability values. Moreover, we discovered that the distribution of each Psammolestes species was determined by different environmental variables: annual precipitation for P. tertius, annual range of temperature for P. coreodes, and isothermality for P. arthuri (Fig. 4). Consistently, the niche equivalence tests indicate that climatic niches of these species have diverged (Table 3).

Fig. 4
figure 4

Environmental niche modeling test. A P. arthuri B P. coreodes C P. tertius. Highlighted areas in dark green correspond to the areas where it is more probable to find individuals of each one of the three species. D Variables measured on the models. Highlighted in red there is the variable that influences the most of the distribution of each one of the species

Table 3 Niche overlap test (NOT) and Niche Divergence test (NDT) results for each one of the combinations between Psammolestes species

Discussion

We recovered three well supported lineages that are concordant with the previously described morphospecies and experimental crosses: P. coreodes, P. tertius and P. arthuri [38]. Both phylogenetic and population genetics analyses indicate that P. coreodes and P. tertius are genetically more similar than they are to P. arthuri. The species distribution analyses suggest that these species are restricted to tropical savannas and have a low probability of occurrence in humid areas. These findings support a role for the Amazon basin as an absolute barrier for the dispersal of species of Psammolestes.

Our phylogenetic reconstruction contrasts with a previous study where P. tertius and P. arthuri were recovered as sister species (bootstrap support = 66%), and this clade sister to P. coreodes (bootstrap support = 87%) [45]. However, here we obtained higher support values in our ML tree (Fig. 1A) and the species tree (Additional file 9A) for the monophyly of the clade composed by P. tertius and P. coreodes, sister to P. arthuri. This result is consistent both with the geographic and genetic distance between these taxa. Despite of the contentious systematics of the genus [28, 40,41,42,43,44], all our analyses validate the existence of three lineages of Psammolestes thus supporting the original species description based on morphological traits [31, 35, 38].

Our mtDNA divergence times estimation, the strong genetic structure we observed, and the absence of gene flow between species suggest that the diversification of Psammolestes is not explained by recent dispersal events across corridors in the forested Amazon basin nor by the Pleistocene arc hypothesis [7]. In contrast, our results agree with a scenario of allopatric differentiation via long distance dispersal event(s) across the Amazon in the late Miocene, followed by recent local geographic expansion as suggested by the Tajimas’ D value [52,53,54,55]. However, we cannot rule out that the current disjunct distribution of the different species of Psammolestes is the result of extinction in the Amazon basin. Interestingly, the diversification times of Psammolestes do not mirror those of Phacellodomus rufifrons (Furnariidae), a bird whose nests are commonly invaded by these kissing bugs [11] and whose diversification occurred in the presence of gene flow in the Pleistocene [11]. Therefore, the historical dispersion patterns of Furnariidae birds do not explain the diversification of Psammolestes. Nevertheless, future studies are needed to understand the evolutionary importance of this peculiar association with Furnariidae birds, which seems to be exclusive to these Triatominae species.

Our niche modeling results suggest that, although all species of Psammolestes occur in the SDTF, they have divergent niches shaped by different climatic predictors, indicating that niche conservatism does not play a role in the diversification of these triatomines. This finding agrees with previous studies that documented nonoverlapping niches for P. coreodes and P. tertius [30, 32]. Such an scenario of niche divergence agrees with the absence of gene flow between the three species and the inviability reported in experimental crosses between P. tertius and P. coreodes [38]. However, the relevance of other factors in species divergence, such as biotic interactions need to be investigated.

In summary, Psammolestes has three genetically structured species that also differ in their climate niches and morphology. They diverged in allopatry without gene flow, and their differentiation involved long distance dispersal event(s) across the Amazon basin (which is a current barrier for their dispersal). Further investigation is needed to elucidate the behavior and ecology of each species as well as the reproductive barriers maintaining their integrity. These findings are relevant in terms of understanding the transmission dynamics of Chagas disease and future improvement of vector control strategies in endemic countries.

Materials and methods

Sampling

We collected a total of 92 individuals of the three Psammolestes species, from 12 localities in Venezuela, Colombia, and Brazil (Fig. 5; Additional file 22). We also sampled Rhodnius prolixus to use as an outgroup in our phylogenetic inferences (see below). Outgroup selection was based on previous phylogenetic reconstructions, where Psammolestes was shown to be sister taxa to some of the prolixus group species (Rhodnius seems to be paraphyletic with respect to Psammolestes), including R. prolixus [45]. The samples obtained were preserved in absolute ethanol and stored at − 20 °C until needed. All collections were done under the permit 63257-2014 awarded to Universidad del Rosario by the ANLA (Autoridad Nacional de Licencias ambientales).

Fig. 5
figure 5

Distribution of the three Psammolestes species sampled in this study. Dots represent the sampling sites of this work while polygons symbolize previously reported sampling sites by Ceccarelli et al. [34], where the Psammolestes species have been found. P. arthuri is represented by the pink color, P. coreodes with yellow, and P. tertius with blue

Ethical statement

This study was submitted and approved by the ethics committee of Universidad del Rosario entitled “Genómica, evolución y biogeografía de especies del género Rhodnius: vectores de la enfermedad de Chagas” act number 007/2016.

Extraction, amplification, and alignment of DNA data

We extracted DNA from leg tissue, using the DNeasy® Blood & Tissue kit, with modifications in the original protocol suggested by the manufacturer for extractions in insects [56]. We amplified and sequenced seven loci to explore phylogenetic relations among Psammolestes: Four new nuclear loci, tRNA Guanine (37) -N (1) methyltransferase (TRNA), Putative juvenile hormone inducible protein (PJH), Probable cytosolic iron sulfur protein assembly protein Ciao 1 (CISP), Lipoyl synthase, mitochondrial (LSM), along with the previously reported Uncharacterized Protein for Cell Adhesion (UPCA) [57, 58] and two loci previously used in Rhodniini tribe phylogenetic analyses, 28S rRNA (28S) [43] and Cytochrome b (CYTB) [28, 59] (see Additional file 23). Amplicons were visualized on a 1.5% agarose gel and the products amplified were purified using the PCR kit ExoSAP-IT Product Cleanup (Affymetrix, Santa Clara, CA, USA) and bidirectionally sequenced by the Sanger method. Contigs were assembled, checked, and edited in CLC Main Workbench 20.0 (https://digitalinsights.qiagen.com). Sequence alignment per locus was performed using MAFFT [60] and the results were visually inspected and manually corrected if necessary, using Mesquite [61]. We ran PHASE algorithm with 1000 iterations per simulation implemented in DnaSP v6.12.03 [62] to resolve alignment ambiguities. Finally, we generated a concatenated alignment with the seven loci in Mesquite (nuclear and mitochondrial: 4.342 bp) [61]. Sequences from this study were submitted in GenBank and numbers can be visualized in Additional file 24.

Molecular phylogenetic analysis

We reconstructed phylogenetic relationships among the three Psammolestes species for each locus and the concatenated alignment (one partition per locus) using maximum likelihood (ML) inference in IQ-Tree 2 [63]. We selected the best substitution model for each case using the IQ-Tree 2 tool ModelFinder [64] based on the Bayesian Information Criterion (BIC; Schwarz, 1978). The substitution model selected for each locus was: HKY + F for 28S rRNA (28S) and RNA Guanine (37) -N (1) methyltransferase (TRNA), F81 + F + I for Lipoyl synthase, mitochondrial (LSM), F81 + F for Probable cytosolic iron sulfur protein assembly protein Ciao 1 (CISP), HKY + F + I for Putative juvenile hormone inducible protein (PJH), K2P for Uncharacterized Protein for Cell Adhesion (UPCA), and HKY + F + G4 for Cytochrome b (CYTB). Node support was assessed with UltraFast Bootstrap [66], aBayes [67] and SH-aLRT [68] with 10,000 pseudoreplicates in all cases. For the partitioned analysis, node supports were calculated by resampling both the partitions and the sites within the resampled partitions [69].

We also estimated the Psammolestes species tree using multilocus coalescence species approach in BEAST2 v.2.6.6 with genes included in this study [70, 71]. We executed three independent runs of 50 million generations, sampling every 1000 generations with burn-in of 15.000 chains. We determined the appropriate molecular clock in MEGA 10.0 [72] and used relaxed uncorrelated lognormal clocks for all partitions. We selected Yule model for speciation process and used the best models of substitutions estimated in IQ-tree [63]. The LogCombiner v.1.10.4 [73] tool was used to combine independent log files and species trees files obtained in each run (three). Trees were visualized in DensiTree v.2.1. The convergence of the chains in the model was examined by confirming the trace files in Tracer v.1.7.1 [74], obtaining an effective sample size of > 200 for all parameters. Lastly, maximum credibility tree was produced in Tree Annotator with burn in of 10% and visualized in Figtree [74].

Finally, we estimated divergence times using the mitochondrial locus CYTB in BEASTv.2.6.6 [70]. We only used this locus, because is the only one with a reported substitution rate, which is 0.012–0.018 substitution/site/million years, and has been used for node dating in previous works [75, 76]. We used a Yule model with two independent runs of 80 million generations, sampled every 1000 generations. We examined the convergence of the chains in Tracer [74] to confirm that the effective sample sizes of the parameters were > 200. We combined the independent runs in Logcombiner [73, 77] and selected the maximum credibility tree in tree annotator, discarding the 10% of the trees as burn-in .

Species delimitation tests

We established the number of Psammolestes lineages with two delimitation methods: The Bayesian Phylogenetics and Phylogeography method (BPP; [78]) and the multi-rate Poisson Tree Processes method (mPTP; [79]). For the BPP analysis, we analysed the mtDNA and nDNA independently as recommended elsewhere [78]. We performed a species tree estimation and joint species delimitation for both datasets, assigning individuals to a “species” based on the results of the phylogenetic trees previously constructed [80]. We implemented four combinations of priors, for divergence times (t) and population size parameters (q), allowing to test different evolutionary scenarios: large population sizes (θ = G (1, 10)), shallow population sizes (θ = G (2, 2000)), deep divergence times (t = G (1, 10)) and shallow divergence times (t = G(2, 2000)). Each analysis used 100,000 iterations per run, sampling every 2 iterations, and using 10% of the iterations in the chain as burn-in.

We used the best ML concatenated tree for the mPTP method. The first step on this method is to calculate the minimum branch length of the tree, correcting the potential error when similar sequences are present. Then, we ran 10 MCMC replicates of 100,000,000 steps, sampling every 1000 steps, of which 10% were used as burn-in. Lineage congruence between both methods were considered as putative species following Carstens et al. [81].

Population genetics analyses

We calculated the haplotype diversity (h), number of segregating sites (S), population substitution rate (θ), and nucleotide diversity (π) to characterize the genetic variability of each Psammolestes species in DNASP v6.12.03 [62]. Moreover, we determined the genetic structure among the three species of Psammolestes with a relative measure (FST) and two absolute ones (Da, Dxy). To evaluate deviations from panmixia, we implemented the Hudson permutation test [82] with 1000 replicates. We also computed three neutrality tests: Ramos-Onsins and Rozas R2 (R2; Ramos-Onsins and Rozas [83]), Tajima’s D (D; Tajima [84]) and Fu & Li’s F and D statistics (FF, FD; Fu and Li [85]), in order to examine possible signatures of population expansion or contraction. We constructed TCS haplotype networks [86] for each locus using PopArt v1.7 [87].

We explored the geographical diversification of Psammolestes testing for isolation by distance implementing a Mantel test in the R package vegan [88] and a linear regression between the genetic distance (1/1 − FST) and the geographical distances calculated in the package geosphere [89]. Additionally, we employed the Monmonier’s algorithm [90] in the R package adegenet [91] using a Delaunay triangulation to detect possible boundaries associated with geographic barriers.

Lastly, STRUCTURE v2.3.4 [92] was implemented to determine the number of genetic clusters (K) present in our data. We ran the analysis with the admixture model with uncorrelated alleles using 100,000 MCMC iterations, sampling K values from 1 to 10, and 5 iterations per K, along with a burn-in length of 100,000. The best K value was selected following Evanno et al. [93] and plotting the mean likelihood L(k) and variance per K using the STRUCTURE HARVESTER (Earl and vonHoldt [94]; http://taylor0.biology.ucla.edu/structureHarvester/; Evanno et al. [95]). The results of the best identified values of k were summarized in clump [95] and plotted using distruct [96].

Environmental niche modelling

Species distribution modelling

Models were constructed using BIOMOD2 package [97] for each Psammolestes species using four algorithms: Artificial Neural Networks (ANN; [98]), Generalized Linear Models (GLM; [99], Generalized Boosting Models (GBM; [100]), and Maximum Entropy Models (MAXENT [101]). We obtained Psammolestes species occurrence records from DataTri [34]. As we do not have an absence record for these species, we generated a pseudoabsences database limited to areas in south America where: (i) other Triatominae species were recorded, but Psammolestes was absent, and (ii) environmental conditions are not suitable for these taxa [102, 103]. An equal weighting for presences and pseudo-absences (prevalence weights = 0.5) was applied for modeling as recommended [104]. Five environmental variables were used (annual mean temperature, isothermality, annual range of temperature, annual precipitation and precipitation seasonality) at spatial resolution of 1 km. These variables were chosen from the 19 CHELSA layers [105] because they exhibited correlation values < 0.5 among them. Additionally, we used a topographic variable (altitude) obtained from Reuter, Nelson and Jarvis [106]. Algorithms were calibrated using 80% of the occurrence points and evaluated the accuracy of the models with the remaining 20%. This procedure (cross-validation) was repeated three times. Three different ensemble models were generated for the three Psammolestes species based on the combination of the four models produced by the previously mentioned algorithms. Two metrics were used to choose the model that best predicts the distribution of the taxa: The True Skill Statistic (TSS) and the area under the curve (AUC) of the receiver-operating characteristic (ROC) [107]. Variable importance to the model was calculated based on the Pearson correlation coefficient between the model with all variables and model where each variable was omitted in turn, using BIOMOD2 package [97].

Environmental niche of the parental species

We estimated the environmental niche equivalence between all pairs of Psammolestes species using R package humboldt [108]. To do this, the overlap Schoener’s D statistic was calculated. This statistic goes from 0 to 1, meaning no overlap and full overlap respectively [109]. D statistical significance was obtained comparing the realized niche overlap against a null distribution of 1000 randomly generated overlaps from the reshuffled occurrence dataset and tested whether niche background and niche equivalency were different from the expectations by chance at α = 0.05 [108]. This was done using the entire species distribution under comparison (niche overlap test = NOT) and using only the area where they overlap (niche divergence test = NDT) [110]. We interpreted the NOT and NDT results following Table 2 from Brown and Carnaval [110].