Abstract
For real-application gas sensors, high performances (response, selectivity, response/recovery time and stability) are demanded. An effective strategy is applying nanomaterials in gas sensors. In this study, the anatase TiO2 flower-like nanomaterials (FLNMs) are prepared through a one-step hydrothermal method which exhibit high-performance toward acetone vapor. TiO2 FLNMs sensors property are characterized at optimal working temperature of 330 °C with selectivity (acetone), response (S = 33.72 toward 250 ppm acetone), linear dependence (R2 = 0.9913), response/recovery time (46/24 s toward 250 ppm acetone) and long-term stability (30 days). These demonstrate that TiO2 FLNMs get a high performance for acetone sensor. Moreover, the limit of detection of acetone is 0.65 ppm which is lower than that of exhaled air for diabetes (0.8 ppm), indicating that TiO2 FLNMs gas sensor gets potential application in medical diagnosis.
Introduction
Over the last couple of decades, due to tremendous requirements for application in plenty of fields such as industrial security and medical diagnosis environmental protection, gas sensors have attracted enthusiastic interest in academic circle [1, 2]. Acetone is a universally used raw material, which is transparent and colorless volatile organic chemical contained with distinct taste and smell, cleanser and diluent in laboratories and industrial manufacture. It is needed to monitor colorless volatile organic concentrations in the workplace for safety and environment for health owing to their explosive possibility and toxicity [3]. Symptoms such as light-headedness and fatigue may be caused by exposure to a certain concentration of acetone (500–2000 ppm). While the concentrations of acetone arise over 2000 ppm, it can give rise to coma, muscle weakness, nausea and even death [4, 5]. Furthermore, acetone concentration in exhaled air is an important indicator of diabetes [6, 7]. It is reported that the concentration of acetone in exhaled air is higher than 1.8 ppm for diabetic, while it is lower than 0.8 ppm for able-bodied person [8]. Therefore, low concentration detection of acetone is significant for diabetes diagnosis.
Metal oxide semiconductors (MOSs) exhibit outstanding sensing performance due to the plentiful oxygen vacancies, which can be beneficial to gas adsorption. Among the MOSs, titanium dioxide (TiO2) is a widely researched n-type MOSs, which has been used in numerous areas such as solar cells [9], electrochemistry [10, 11], photocatalysis [12] and gas sensors [13]. Various kinds of TiO2 nanostructures with distinct morphologies and sizes, such as nanowires, nanotubes, nanoparticles and nanobelts have been applied for acetone detecting and displayed high sensing properties [14, 15], whereas several shortcomings like poor stability, low selectivity, low response and long response/recovery times, restricted TiO2 nanomaterials in realistic application. To conquer these drawbacks, strategies such as core–shell structures [16], doping [17], functionalize with noble metals [18] and light activation [19] have been demonstrated.
Inspired by these, TiO2 flower-like nanomaterials (FLNMs) are successfully prepared through a one-step hydrothermal method, which exhibit high sensing performance for acetone. The TiO2 FLNMs’ morphology, crystal structure and elementary composition are analyzed by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Moreover, the gas properties are well researched and sensing mechanism has also been discussed. These results reveal that TiO2 FLNMs display greatly response, stability and response properties to the acetone. TiO2 FLNMs shows a high performance in detecting low concentration acetone, which can be used for diabetes diagnosis.
Experimental Section
Materials
Titanium films (99.999% purity) are bought from Haiyuan Aluminum Corporation, hydrofluoric acid (HF, 40 wt%) is supplied by Tianjin Chemical Reagent Corporation. Acetone (C3H6O, 99.5%), ethanol absolute (C2H6O, 99.7%), benzene (C6H6, 99.5%), toluene (C6H5CH3, 99.5%), xylene (C8H10, 99.0%), methanol (CH3OH, 99.5%) and formaldehyde solution (HCHO, 37–40%) are bought from Tianjin Chemical Reagent Corporation. All experimental water is deionized water (18.2 MΩ) in this work. All reagents are purchased without any further purification.
Sample Preparation
TiO2 FLNMs are prepared through a one-step hydrothermal reaction between titanium films and HF, which is mentioned in previous report [20, 21]. Firstly, titanium films (3 cm × 1 cm) are treated by a basic procedure of decontamination. Secondly, titanium films and 10 mmol HF 60 mL are placed to a 100-mL Teflon autoclave, maintaining at the temperature of 110 °C for 6 h. The reaction occurs only on the surface of the titanium film, gray precipitates are scratched off and collected after the autoclave cooling down to room temperature, the final products are washed alternately with absolute ethanol and deionized water for three times. Finally, the specimens are dried at 80 °C and the pure TiO2 FLNMs powder is obtained. The mechanism of the formation of titania processes is as follows.
Characterizations
The surface morphologies are obtained by scanning electron microscope with an acceleration voltage of 30.0 kV (SEM, Quanta FEG 250, FEI, USA). Transmission electron microscopy (TEM) is observed on a JEM-2100 electron microscope. The crystalline phase of all the specimens is identified by the X-ray diffraction analysis with Cu-Kα1 radiation (λ = 1.5405 Å) scanning from 20° to 80° (XRD, DX-1000, Dandong Fangyuan Instrument Co. Ltd., China). X-ray photoelectron spectroscopy (XPS) is measured to reveal chemical valence states and chemical composition, it was performed on an imaging photoelectron spectrometer (Thermo Fisher Scientific, USA) with a monochromatic Al Kα X-ray source. The gas sensing properties are accomplished by CGS-1TP intelligent gas sensing analysis system (Beijing Elite Tech Co., Ltd. China).
Sensor Preparation
The gas sensors are made by a brush-coating technique. Firstly, TiO2 FLNMs powder is mixed with deionized water to create a uniform slurry after grinding. Secondly, the paste is coated onto Ag interdigitated electrodes by a paint brush. To increase the stability and repeatability, the prepared sensors are aged at 330 °C for 12 h in ambient air. The related preparation process is displayed in Fig. 1.
The gas sensing measurement are achieved via CGS-1TP intelligent gas sensing analysis system. The microsyringe with the different target liquids is injected into the testing chamber (18 L). Target liquids evaporate into vapor in the chamber. The resistances of TiO2 FLNMs sensors change rapidly and reach into a steady value. Then, the air is pumped into testing chamber to restore the sensor resistance to its pretest value. The gas sensor response is defined as S = Ra/Rg, which Rg and Ra is the resistance under target gas and atmosphere, respectively. The response time/recovery time is defined as the time needed to reach 90% of the saturation S value change upon the target gas or ambient air, respectively.
Results and Discussion
Characterization
The surface morphologies and microstructures of TiO2 FLNMs are observed by SEM and TEM. SEM images are revealed in Fig. 2a, b. It is evident that TiO2 composed of aggregated nanoflowers with size around 0.9–1.7 μm. In order to conform insight of TiO2 FLNMs’ microstructures, TEM image is displayed in Fig. 2c. The image exhibits obvious flower-like nanostructure. The crystalline structure of TiO2 FLNMs is further demonstrated by high-resolution TEM (HRTEM), as shown in Fig. 2d. The lattice space is 0.35 nm which is well matched with the anatase TiO2 (101).
The crystal structure of TiO2 FLNMs is also confirmed by XRD, which is portrayed in Fig. 3. It is revealed that the characteristic diffraction peaks is anatase TiO2 match with the standard data (JCPDS. 21-1272). The composition phase located at 2θ of 25.3°, 37.9°, 48.1°, 54.0°, 55.1°, 62.8°, 68.9°, 70.3° and 75.1° are assigned to (101), (004), (200), (105), (211), (204), (116), (220) and (215) planes of anatase phase.
XPS analysis is applied to confirm the surface elemental chemical states and elementary compositions. Figure 4a shows the full-scale XPS survey scan spectra. It reveals that TiO2 FLNMs compose of Ti, O and F elements, indicating that there are no other impurities, F element is the residual of HF originating from synthetic process. C 1s at 284.8 eV is used to the calibration peak. The peaks centered at 458.7 eV and 464.5 eV are corresponding to the spin–orbit split lines of Ti4+ 2p3/2 and Ti4+ 2p1/2, respectively. (Fig. 4b) [22, 23] Fig. 4c displays peaks around at 529.9 eV and 531.5 eV can be assigned to crystal lattice oxygen ions (Olat) and surface adsorbed oxygen ions (Oads). The adsorbed oxygen ions play a significant role in gas sensing property [24,25,26]. Figure 4d reveals a peak at 684.1 eV which is derived from the adsorbed F on the TiO2 surface [27].
It is seen from Fig. 5a that the TiO2 FLNMs has a strong absorption in the range of 300–400 nm with absorption edge of 400 nm. Its band gap is calculated by the following equation.
The band gap (Eg) of the TiO2 FLNMs is 3.10 eV, being smaller than that of anatase (3.20 eV), as shown in Fig. 5b. It is reported that F residual have an effect on band gap. It is beneficial to reduce the band gap, facilitate electron transition and improve material properties [28, 29].
Acetone Sensing Properties
To assess applicability of TiO2 FLNMs sensor for acetone, some fundamental parameters are studied. As we all know, the working temperature is a significant parameter for gas sensors owning to its vigorously affect surface reaction and chemisorption between oxygen and target gas molecules. The most excellent response can be reached at an optimum working temperature when the absorption/desorption achieve equilibrium. To find the optimal working temperature, TiO2 FLNMs gas sensors are tested under temperatures range from 280 to 440 °C with a concentration of 250 ppm acetone ambient, while the gas sensor prepared with Degussa P25 is also tested at the same condition, as shown in Fig. 6a. It is clearly that the optimal working temperature of TiO2 FLNMs and Degussa P25 both are 330 °C. Thus, all the subsequent experiments are carried out at the optimal working temperature of 330 °C. Furthermore, response of Degussa P25 gas sensors is apparently lower-ranking to TiO2 FLNMs gas sensor, whereas its response only can achieve 5.0 for 250 ppm acetone and the response of TiO2 FLNMs is 33.72 in the same circumstance. It indicates that TiO2 FLNMs show better gas sensing property than commercial Degussa P25. Selectivity represents anti-interference capability to special gases. Thus, the selectivity of TiO2 FLNMs is analyzed through exposing to 250 ppm benzene, toluene, xylene, acetone, methanol, formaldehyde and ethanol under optimum working temperature, respectively, as revealed in Fig. 6b. It is clearly displayed that the response toward benzene, toluene, xylene, methanol, formaldehyde and ethanol (1.47, 3.36, 12.28, 4.94, 2.86 and 14.12) is much lower than that of acetone (33.72). It indicates that TiO2 FLNMs sensor shows comparatively selectivity for acetone.
The dynamic response–recover curves of TiO2 FLNMs sensors versus concentration from 10 to 1000 ppm of acetone and ambient air at optimal working temperature are displayed in Fig. 7a. It is revealed that response is linear relationship in assessing scope. The response of TiO2 FLNMs linearly increases with the increment of acetone concentration. The linear response dependence on acetone concentration is also studied in Fig. 7b. It shows that the fitting curves versus concentration of acetone toward 10–500 ppm, the correlated coefficients (R2) is 0.9913 indicating an outstanding linear-dependent relationship between the response and concentration. Another important parameters limit of detection (LOD) are also calculated [30,31,32]. The LOD of acetone is 0.65 ppm which is lower than the detection limit for diabetes in exhaled air. Therefore, TiO2 FLNMs gas sensor gets potential application in medical diagnosis.
Repeatability is another significant factor to assess the reliability of the pre-prepared sensor. To evaluate the repeatability of TiO2 FLNMs sensor, the dynamic sensing toward 250 ppm acetone is measured for 5 cycles (seen in Fig. 7c). It reveals that its response to 250 ppm acetone has no distinct fluctuations, indicating excellent performance of repeatability. Such a high repeatability can be ascribed to the induction of ultra-stable TiO2 to enhance its sensing stability. Figure 7d displays the response/recovery time of TiO2 FLNMs. It reveals that the response/recovery time are 46 and 23 s toward 250 ppm acetone, respectively. It indicates that TiO2 FLNMs sensor exhibits excellent adsorption and desorption property in acetone. This probable reason is that the target molecules are faster and easier dissociated onto the TiO2 FLNMs’ surface, leading to a fast decline in the O2− ions concentration on the surface of TiO2 FLNMs and a rapid increase in the electron concentration, which displays an quick response.
In realistic applications, the long-term stability should be examined. TiO2 FLNMs gas sensors’ response over 30 days is assessed at the optimal working temperature (seen in Fig. 7e). It illustrates that the responses only have a minor change, which is less than 7.17% of its initial rate. It indicates excellent stability of TiO2 FLNMs gas sensor. To conform the brilliant sensing performance of TiO2 FLNMs sensor, a comparison of previous reports and this work on acetone is depicted in Table 1, it further demonstrates that TiO2 FLNMs represent high acetone sensing performance in this work.
Acetone Sensing Mechanism
TiO2 is an n-type characteristic semiconductor, while TiO2 FLNMs sensors are exposed to the acetone vapor, the resistances declined quickly, implying of n-type semiconductor properties. Gas sensing properties rely on the change of surface occupation. As reported by Wolkenstein’s model for semiconductors [40], we suggest a correspondent model for TiO2 FLNMs, as schematically depicted in Fig. 8. In ambient air, oxygen adsorbs onto the surface of TiO2 FLNMs, and electron transfers from conduction band to the oxygen molecules to create a variety of oxygen ions with distinct valence states (O2ads−, Oads−, O2−ads), which gives rise to a thick depletion layer’s formation and resulting in a high resistance of the sensor [41, 42]. When TiO2 FLNMs sensors are exposed to target gas, the reductive gas responds with the oxygen adsorbed on TiO2 FLNMs surface. The electrons are then freed back to the conduction band of semiconductor, resulting in a lower potential barrier and a thinner depletion layer [43]. This procedure leads to a reduction of resistance and can be expressed by the following equations [35]:
Conclusion
In this work, the newly anatase TiO2 FLNMs are successfully prepared though a one-step hydrothermal method, which are composed of uniformly flower like nanostructure with size around 0.9–1.7 μm. It is found that this nanomaterials enable a high-performance toward acetone. The results show high selectivity and response, great linear dependence, excellent repeatability, good response/recovery time and long-term stability at an optimum temperature of 330 °C. Interestingly, the LOD of acetone is 0.65 ppm which is lower than that of in exhaled air for diabetes. These results demonstrate a great potential for medical diagnosis. This study paves a new way of using TiO2 FLNMs for acetone sensor.
Availability of Data and Materials
All data generated or analyzed during this study are included in this published article.
References
Novikov S, Lebedeva N, Satrapinski A, Walden J, Davydov V, Lebedev A (2016) Graphene based sensor for environmental monitoring of NO2. Sens Actuators B Chem 236:1054–1060
Xing XX, Du LL, Feng DL, Wang C, Yao MS, Huang XH, Zhang SX, Yang DC (2020) Individual gas sensor detecting dual exhaled biomarkers via a temperature modulated n/p semiconducting transition. J Mater Chem A 8(48):26004–26012
Wang CC, Weng YC, Chou TC (2007) Acetone sensor using lead foil as working electrode. Sens Actuators B Chem 122(2):591–595
Ge WY, Jiao SY, Chang Z, He XM, Li YX (2022) Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Appl Mater Interfaces 12(11):13200–13207
Hou X, Liu H, Zhang Y, Jiang M, Yuan L, Shi J, Hou C (2020) Oxygen vacancies enhancing acetone-sensing performance. Mater Today Chem 18:100379
Choi SJ, Jang BH, Lee SJ, Min BK, Rothschild A, Kim ID (2014) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6(4):2588–2597
Park S (2017) Acetone gas detection using TiO2 nanoparticles functionalized In2O3 nanowires for diagnosis of diabetes. J Alloys Compd 696:655–662
Wei SH, Zhao GY, Du WM, Tian QQ (2016) Synthesis and excellent acetone sensing properties of porous WO3 nanofibers. Vacuum 124:32–39
Nam J, Kim JH, Kim CS, Kwon JD, Jo S (2020) Surface engineering of low-temperature processed mesoporous TiO2 via oxygen plasma for flexible perovskite solar cells. ACS Appl Mater Interfaces 12(11):12648–12655
Cai Y, Wang HE, Huang SZ, Yuen MF, Cai HH, Wang C, Yu Y, Li Y, Zhang WJ, Su BL (2016) Porous TiO2 urchins for high performance Li-ion battery electrode: facile synthesis, characterization and structural evolution. Electrochim Acta 210:206–214
Dong WJ, Wang D, Li XY, Yao Y, Zhao X, Wang Z, Wang HE, Li Y, Chen LH, Qian D, Su BL (2020) Bronze TiO2 as a cathode host for lithium–sulfur batteries. J Energy Chem 48:259–266
Yu J, Godiksen AL, Mamahkel A, Søndergaard-Pedersen F, Rios-Carvajal T, Marks M, Lock N, Rasmussen SB, Iversen BB (2020) Selective catalytic reduction of NO using phase-pure anatase, rutile, and brookite TiO2 nanocrystals. Inorg Chem 59(20):15324–15334
Zhang R, Zhang T, Zhou TT, Wang LL (2018) Rapid sensitive sensing platform based on yolk-shell hybrid hollow sphere for detection of ethanol. Sens Actuators B Chem 256:479–487
Cheng XL, Xu YM, Gao S, Zhao H, Huo LH (2011) Ag nanoparticles modified TiO2 spherical heterostructures with enhanced gas-sensing performance. Sens Actuators B Chem 155(2):716–721
Yang M, Huo LH, Zhao H, Gao S, Rong ZM (2009) Electrical properties and acetone-sensing characteristics of LaNi1−xTixO3 perovskite system prepared by amorphous citrate decomposition. Sens Actuators B Chem 143(1):111–118
Katoch A, Choi SW, Sun GJ, Kim HW, Kim SS (2014) Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core–shell nanofiber. Nanotechnology 25(17):175501
Su J, Zou XX, Zou YC, Li GD, Wang PP, Chen JS (2013) Porous titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature. Inorg Chem 52(10):5924–5930
Lai HY, Chen CH (2012) Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles. J Mater Chem 22(26):13204–13208
Alenezi MR, Alshammari AS, Jayawardena KDGI, Beliatis MJ, Henley SJ, Silva SRP (2013) Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J Phys Chem C 117(34):17850–17858
Wu GS, Wang JP, Thomas DF, Chen AC (2008) Synthesis of F-doped flower like TiO2 nanostructures with high photoelectrochemical activity. Langmuir 24(7):3503–3509
Yang WY, Tang JQ, Ou QH, Yan XQ, Liu L, Liu YK (2021) Recyclable Ag-deposited TiO2 SERS substrate for ultrasensitive malachite green detection. ACS Omega 6(41):27271–27278
Yu W, Liu XJ, Pan LK, Li JJ, Liu JY, Zhang J, Li P, Chen C, Sun Z (2014) Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Appl Surf Sci 319:107–112
Li JJ, Xu XT, Liu XJ, Yu CY, Yan D, Sun Z, Pan LK (2016) Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J Alloys Compd 679:454–462
Zhu H, Haidry AA, Wang Z, Ji YW (2021) Improved acetone sensing characteristics of TiO2 nanobelts with Ag modification. J Alloys Compd 887:161312
Chen N, Li YX, Deng DY, Liu X, Xing XX, Xiao XC, Wang YD (2017) Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sens Actuators B Chem 238:491–500
Zhang ML, Yuan ZH, Ning T, Song JP, Zheng C (2013) Growth mechanism of Pt modified TiO2 thick film. Sens Actuators B Chem 176:723–728
Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14(9):3808–3816
Serpone N, Lawless D, Khairutdinov R (1995) Size Effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99(45):16646–166654
Zhang JF, Zhou P, Liu JJ, Yu JG (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386
Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157
Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933
Liu L, Yang WY, Zhang H, Yan XQ, Liu YK (2022) Ultra-high response detection of alcohols based on CdS/MoS2 composite. Nanoscale Res Lett 17(1):1–10
Rella R, Spadavecchia J, Manera MG, Capone S, Taurino A, Martino M, Caricato AP, Tunno T (2007) Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sens Actuators B Chem 127(2):426–431
Bhattacharyya P, Bhowmik B, Fecht HJ (2015) Operating temperature, repeatability and selectivity of TiO2 nanotube-based acetone sensor: influence of Pd and Ni nanoparticle modifications. IEEE Trans Device Mater Reliab 15(3):376–383
Bian HQ, Ma SY, Sun AM, Xu XL, Yang GJ, Gao JM, Zhang ZM, Zhu HB (2015) Characterization and acetone gas sensing properties of electrospun TiO2 nanorods. Superlattice Microstruct 81:107–113
Zhang RG, Liu ZX, Ling LX, Wang BJ (2015) The effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and its initial dissociation step: a DFT study. Appl Surf Sci 353:150–157
Navale ST, Yang ZB, Liu CST, Cao PJ, Patil VB, Ramgir NS, Mane RS, Stadler FJ (2018) Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sens Actuators B Chem 255:1701–1710
Yang Y, Liang Y, Wang GZ, Liu LL, Yuan CL, Yu T, Li QL, Zeng FY, Gu G (2015) Enhanced gas-sensing properties of the hierarchical TiO2 hollow microspheres with exposed high-energy 001 crystal facets. ACS Appl Mater Interfaces 7(44):24902–24908
Cao S, Sui N, Zhang P, Zhou TT, Tu JC, Zhang T (2022) TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J Colloid Interfaces Sci 607:357–366
Drost H (1991) Electronic processes on semiconductor surfaces during chemisorption. Z Phys Chem 177(1):123–123
Cao MH, Wang YD, Chen T, Antonietti M, Niederberger M (2008) A highly sensitive and fast-responding ethanol sensor based on CdIn2O4 nanocrystals synthesized by a nonaqueous sol−gel route. Chem Mater 20(18):5781–5786
Liu X, Chen N, Xing XX, Li YX, Xiao XC, Wang YD, Djerdj I (2015) A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Adv 5(67):54372–54378
Liu X, Chen N, Han BQ, Xiao XC, Chen G, Djerdj I, Wang YD (2015) Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 7(36):14872–14880
Acknowledgements
Not applicable.
Funding
This work was funded by the National Natural Science Foundation of China (Grant No.11764046 and 11764047).
Author information
Authors and Affiliations
Contributions
YL guided the experiments and revised the manuscript; QO supplied help for SEM measurements; XY and LL supplied help for gas sensing testing; SL and HC supplied help for data analysis; WY performed the design, fabrication a testing of the device, analyzed the data and wrote the paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics Approval and Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Yang, W., Ou, Q., Yan, X. et al. High Sensing Performance Toward Acetone Vapor Using TiO2 Flower-Like Nanomaterials. Nanoscale Res Lett 17, 82 (2022). https://doi.org/10.1186/s11671-022-03721-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s11671-022-03721-4
Keywords
- Flower-like TiO2
- Hydrothermal method
- Acetone
- Gas sensing
- Medical diagnosis