Introduction and preliminaries

Alber and Guerre-Delabriere [1] introduced the concept of weak contraction in Hilbert spaces. Rhoades [2] has shown that the result concluded by Alber and Guerre-Delabriere in [1] is also valid in complete metric spaces. Berinde and Berinde [3] extended weak contraction for multi-valued mappings and introduced the notion of multi-valued (θ, L)-weak contraction and multi-valued (α, L)-weak contraction. Kamran [4] extended these contractions for hybrid pair of mappings and introduced multi-valued (f, θ, L)-weak contraction and multi-valued (f,α,L)-weak contraction. Sintunavarat and Kumam [5] introduced the notion of generalized (f, α, β)-weak contraction to extend the notion of multi-valued (f, α, L)-weak contraction. They further extended the notion of generalized (f, α, β)-weak contraction by introducing hybrid generalized multi-valued contraction mappings and established a common fixed point theorem [6]. The purpose of this paper is to extend the notion of hybrid generalized multi-valued contraction and to prove common coincidence and common fixed point theorems.

Let (X, d) be a metric space. For x ∈ X and A ⊆ X, d(x, A) = inf{d(x, y): y ∈ A}. We denote by CB(X) the class of all nonempty closed and bounded subsets of X. For every A, B ∈ CB(X)

H ( A , B ) = max { sup x A d ( x , B ) , sup y B d ( y , A ) } .

Such a map H is called Hausdorff metric induced by d. A point x ∈ X is said to be a common fixed point of f:X → X and T:X → CB(X) if x = f x ∈ T x. The point x ∈ X is said to be a coincidence point of f:X → X and T:X → CB(X) if f x ∈ T x. Some works for hybrid pair are available in [710].

The mappings f:X → X and T:X → CB(X) are called R-weakly commuting [11, 12] if for all x ∈ X, f T x ∈ CB(X), and there exists a positive real number R such that H(f T x, T f x) ≤ R d(f x, T x).

Lemma 1

[4] Let (X, d) be a metric space, {A k } be a sequence in C B(X), and {x k } be a sequence in X such that x k  ∈ Ak−1. Let ϕ:[0, ) → [0, 1) be a function satisfying limsup r t + ϕ(r)<1 for every t∈ [0, ). Suppose d( x k 1 , x k ) to be a nonincreasing sequence such that

H ( A k 1 , A k ) ϕ ( d ( x k 1 , x k ) ) d ( x k 1 , x k ) ,
d ( x k + 1 , x k ) H ( A k 1 , A k ) + ϕ n k ( d ( x k 1 , x k ) ) ,

where n1 < n2 < …, k, n k . Then, {x k } is a Cauchy sequence in X.

Lemma 2

[13] If A, B ∈ C B(X) and a ∈ A, then for each ϵ > 0, there exists b ∈ B such that

d ( a , b ) H ( A , B ) + ϵ .

Definition 1

[6] Let (X, d) be a metric space, f:X → X be a single-valued mapping, and T:X → CB(X) be a multi-valued mapping. T is said to be a hybrid generalized multi-valued contraction mapping if and only if there exist two functions ϕ:[0, ) → [0, 1) satisfying limsup r t + ϕ(r)<1 for every t∈ [0, ) and φ:[0, ) → [0, ) such that

H ( Tx , Ty ) ϕ ( M ( x , y ) ) M ( x , y ) + φ ( N ( x , y ) ) N ( x , y ) , for each x , y X ,
(1)

where

M ( x , y ) = max { d ( fx , fy ) , d ( fy , Tx ) } ,

and

N ( x , y ) = min { d ( fx , fy ) , d ( fx , Tx ) , d ( fy , Ty ) , d ( fx , Ty ) , d ( fy , Tx ) } .

Main results

Definition 2

Let (X, d) be a metric space, f, g:X → X and T:X → CB(X). A mapping S:X → CB(X) is said to be an extended hybrid generalized multi-valued f contraction if and only if there exist two functions ϕ:[0, ) → [0, 1) satisfying limsup r t + ϕ(r)<1 for every t∈ [0, ) and φ:[0, ) → [0, ) such that

H ( Sx , Ty ) ϕ ( M ( x , y ) ) M ( x , y ) + φ ( N ( x , y ) ) N ( x , y ) , for each x , y X ,
(2)

where

M ( x , y ) = max { d ( fx , gy ) , min { d ( fx , Ty ) , d ( gy , Sx ) } } ,

and

N ( x , y ) = min { d ( fx , gy ) , d ( fx , Tx ) , d ( gy , Sy ) , d ( fx , Ty ) , d ( gy , Sx ) } .

Remark 1

If f = g and T = S, then Definition 2 reduces to Definition 1.

Lemma 3

Let (X, d) be a metric space, f, g:X → X and T:X → C B(X). Let S:X → C B(X) be the extended hybrid generalized multi-valued f contraction. Let {g x2k+1} be a g-orbit of S at x0 and {f x2k+2} be an f-orbit of T at x1 such that

d( y k + 1 , y k + 2 )H( A k , A k + 1 )+ ϕ n k + 1 (M( x k , x k + 1 )),
(3)

for each k ∈ {0, 2, 4, 6, …}, and

d( y k + 2 , y k + 1 )H( A k + 1 , A k )+ ϕ n k + 1 (M( x k + 1 , x k )),
(4)

for each k ∈ {1, 3, 5, …}, where y2k+1 = g x2k+1 ∈ S x2k = A2k, y2k+2 = f x2k+2 ∈ T x2k+1 = A2k+1, for each k ≥ 0. Further, n1 < n2 < … and {d(y k , yk+1)} is a nonincreasing sequence. Then, {y k } is a Cauchy sequence in X.

Proof

Let y0 = x0. Then, we construct a sequence {y k } in X, A k in CB(X) such that y2k+1 = g x2k+1 ∈ S x2k = A2k and y2k+2 = f x2k+1 ∈ T x2k+1 = A2k+1.

For k ∈ {0, 2, 4, 6, …}, it follows from the extended hybrid generalized multi-valued f contraction that

H ( A k , A k + 1 ) = H ( S x k , T x k + 1 ) ; ϕ ( M ( x k , x k + 1 ) ) M ( x k , x k + 1 ) + φ ( N ( x k , x k + 1 ) ) N ( x k , x k + 1 ) ; = ϕ ( max { d ( f x k , g x k + 1 ) , min { d ( f x k , T x k + 1 ) , d ( g x k + 1 , S x k ) } } ) × max { d ( f x k , g x k + 1 ) , min { d ( f x k , T x k + 1 ) , d ( g x k + 1 , S x k ) } } + φ ( min { d ( f x k , g x k + 1 ) , d ( f x k , T x k ) , d ( g x k + 1 , S x k + 1 ) , d ( f x k , T x k + 1 ) , d ( g x k + 1 , S x k ) } ) min { d ( f x k , g x k + 1 ) , d ( f x k , T x k ) , d ( g x k + 1 , S x k + 1 ) , d ( f x k , T x k + 1 ) , d ( g x k + 1 , S x k ) } ; = ϕ ( d ( f x k , g x k + 1 ) ) d ( f x k , g x k + 1 ) ; = ϕ ( d ( y k , y k + 1 ) ) d ( y k , y k + 1 ) .

Similarly, we show that for k = {1, 3, 5, …}, we have

H ( A k + 1 , A k ) ϕ ( d ( y k + 1 , y k ) ) d ( y k + 1 , y k ) .

By (3), for k ∈ {0, 2, 4, 6, …}, we have

d ( y k + 1 , y k + 2 ) = d ( g x k + 1 , f x k + 2 ) ; H ( S x k , T x k + 1 ) + ϕ n k + 1 ( M ( x k , x k + 1 ) ) ; = H ( A k , A k + 1 ) + ϕ n k + 1 ( max { d ( f x k , g x k + 1 ) , min { d ( f x k , T x k + 1 ) , d ( g x k + 1 , S x k ) } } ) ; = H ( A k , A k + 1 ) + ϕ n k + 1 ( d ( f x k , g x k + 1 ) ) ; = H ( A k , A k + 1 ) + ϕ n k + 1 ( d ( y k , y k + 1 ) ) .

Similarly, for k = {1, 3, 5, …}, we have

d ( y k + 2 , y k + 1 ) H ( A k + 1 , A k ) + ϕ n k + 1 ( d ( y k + 1 , y k ) ) .

Given that {d(y k , yk+1)} is a nonincreasing sequence, thus, all the conditions of Lemma 1 are satisfied. Hence, {y k } is a Cauchy sequence in X. □

Theorem 1

Let (X, d) be a complete metric space, f, g:X → X, T:X → C B(X) are continuous mappings, and S:X → C B(X) is a continuous extended hybrid generalized multi-valued f contraction such that S X ⊆ g X and T X ⊆ f X. Then, (i) if g, T and f, S are R-weakly commuting, then g, T and f, S have a common coincidence point say z. (ii) Moreover, if g g z = g z, f g z = g z, then f, g, T, and S have a common fixed point.

Proof

Let x0 be an arbitrary point in X and y0 = f x0. Then, we construct a sequence {y k } in X, A k in CB(X) respectively as follows. Since S X ⊆ g X, there exists a point x1 ∈ X such that y1 = g x1 ∈ S x0 = A0. We can choose a positive integer n1 such that

ϕ n 1 (d( y 0 , y 1 ))[1ϕ(M( x 0 , x 1 ))]M( x 0 , x 1 ).
(5)

Since T X ⊆ f X, there exists y2 = f x2 ∈ T x1 = A1 such that

d( y 1 , y 2 )H(S x 0 ,T x 1 )+ ϕ n 1 (d( y 0 , y 1 )).
(6)

Using (5) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

d ( y 1 , y 2 ) H ( S x 0 , T x 1 ) + ϕ n 1 ( d ( y 0 , y 1 ) ) ; ϕ ( M ( x 0 , x 1 ) ) M ( x 0 , x 1 ) + φ ( N ( x 0 , x 1 ) ) N ( x 0 , x 1 ) + [ 1 ϕ ( M ( x 0 , x 1 ) ) ] M ( x 0 , x 1 ) ; = M ( x 0 , x 1 ) ; = min { d ( f x k , T x k + 1 ) , d ( g x k + 1 , S x k ) } } ) ; = d ( f x 0 , g x 1 ) ; = d ( y 0 , y 1 ) .

Now, we can choose a positive integer n2 > n1 such that

ϕ n 2 (d( y 2 , y 1 ))[1ϕ(M( x 2 , x 1 ))]M( x 2 , x 1 ).
(7)

There exists y3 = g x3 ∈ S x2 = A2 such that

d( y 3 , y 2 )H(S x 2 ,T x 1 )+ ϕ n 2 (d( y 2 , y 1 )).
(8)

Using (7) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

d ( y 3 , y 2 ) H ( S x 2 , T x 1 ) + ϕ n 2 ( d ( y 2 , y 1 ) ) ; ϕ ( M ( x 2 , x 1 ) ) M ( x 2 , x 1 ) + φ ( N ( x 2 , x 1 ) ) N ( x 2 , x 1 ) + [ 1 ϕ ( M ( x 2 , x 1 ) ) ] M ( x 2 , x 1 ) ; = M ( x 2 , x 1 ) ; = max { d ( f x 2 , g x 1 ) , min { d ( f x 2 , T x 1 ) , d ( g x 1 , S x 2 ) } } ; = d ( f x 2 , g x 1 ) ; = d ( y 2 , y 1 ) .

Now, we can choose a positive integer n3 > n2 such that

ϕ n 3 (d( y 2 , y 3 ))[1ϕ(M( x 2 , x 3 ))]M( x 2 , x 3 ).
(9)

There exists y4 = f x4 ∈ T x3 = A3 such that

d( y 3 , y 4 )H(S x 2 ,T x 3 )+ ϕ n 3 (d( y 2 , y 3 )).
(10)

Using (9) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

d ( y 3 , y 4 ) H ( S x 2 , T x 3 ) + ϕ n 3 ( d ( y 2 , y 3 ) ) ; ϕ ( M ( x 2 , x 3 ) ) M ( x 2 , x 3 ) + φ ( N ( x 2 , x 3 ) ) N ( x 2 , x 3 ) + [ 1 ϕ ( M ( x 2 , x 3 ) ) ] M ( x 2 , x 3 ) ; = M ( x 2 , x 3 ) ; = max { d ( f x 2 , g x 3 ) , min { d ( f x 2 , T x 3 ) , d ( g x 3 , S x 2 ) } } ; = d ( f x 2 , g x 3 ) ; = d ( y 2 , y 3 ) .

Now, we can choose a positive integer n4 > n3 such that

ϕ n 4 (d( y 4 , y 3 ))[1ϕ(M( x 4 , x 3 ))]M( x 4 , x 3 ).
(11)

There exists y5 = g x5 ∈ S x4 = A4 such that

d( y 5 , y 4 )H(S x 4 ,T x 3 )+ ϕ n 4 (d( y 4 , y 3 )).
(12)

Using (11) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

d ( y 5 , y 4 ) H ( S x 4 , T x 3 ) + ϕ n 4 ( d ( y 4 , y 3 ) ) ; ϕ ( M ( x 4 , x 3 ) ) M ( x 4 , x 3 ) + φ ( N ( x 4 , x 3 ) ) N ( x 4 , x 3 ) + [ 1 ϕ ( M ( x 4 , x 3 ) ) ] M ( x 4 , x 3 ) ; = M ( x 4 , x 3 ) ; = max { d ( f x 4 , g x 3 ) , min { d ( f x 4 , T x 3 ) , d ( g x 3 , S x 4 ) } } ; = d ( f x 4 , g x 3 ) ; = d ( y 4 , y 3 ) .

By repeating this process for all kW, we have the following: Case (i). For k ∈ {0, 2, 4, 6, …}, we can choose a positive integer nk+1 such that

ϕ n k + 1 (d( y k , y k + 1 ))[1ϕ(M( x k , x k + 1 ))]M( x k , x k + 1 ).
(13)

There exists yk+2 = f xk+2 ∈ T xk+1 = Ak+1 such that

d( y k + 1 , y k + 2 )H(S x k ,T x k + 1 )+ ϕ n k + 1 (d( y k , y k + 1 )).
(14)

Using (13) and the notion of extended generalized multi-valued f contraction in the above inequality, we have

d ( y k + 1 , y k + 2 ) H ( S x k , T x k + 1 ) + ϕ n k + 1 ( d ( y k , y k + 1 ) ) ; ϕ ( M ( x k , x k + 1 ) ) M ( x k , x k + 1 ) + φ ( N ( x k , x k + 1 ) ) N ( x k , x k + 1 ) + [ 1 ϕ ( M ( x k , x k + 1 ) ) ] M ( x k , x k + 1 ) ; = M ( x k , x k + 1 ) ; = max { d ( f x k , g x k + 1 ) , min { d ( f x k , T x k + 1 ) , d ( g x k + 1 , S x k ) } } ; = d ( f x k , g x k + 1 ) ; = d ( y k , y k + 1 ) .

Case (ii). For k ∈ {1, 3, 5, 7, …}, we can choose a positive integer n k such that

ϕ n k + 1 (d( y k + 1 , y k ))[1ϕ(M( x k + 1 , x k ))]M( x k + 1 , x k ).
(15)

There exists yk+2 = g xk+2 ∈ S xk+1 = Ak+1 such that

d( y k + 2 , y k + 1 )H(S x k + 1 ,T x k )+ ϕ n k + 1 (d( y k + 1 , y k )).
(16)

Using (15) and the notion of extended generalized multi-valued f contraction in the above inequality, we have

d ( y k + 2 , y k + 1 ) H ( S x k + 1 , T x k ) + ϕ n k + 1 ( d ( y k + 1 , y k ) ) ; ϕ ( M ( x k + 1 , x k ) ) M ( x k + 1 , x k ) + φ ( N ( x k + 1 , x k ) ) N ( x k + 1 , x k ) + [ 1 ϕ ( M ( x k + 1 , x k ) ) ] M ( x k + 1 , x k ) ; = M ( x k + 1 , x k ) ; = max { d ( f x k + 1 , g x k ) , min { d ( f x k + 1 , T x k ) , d ( g x k , S x k + 1 ) } } ; = d ( f x k + 1 , g x k ) ; = d ( y k + 1 , y k ) .

Hence, {d(y k ,yk+1)} is a nonincreasing sequence for each k ≥ 0. Thus, by Lemma 3, {y k } is a Cauchy sequence in X. Then, (2) ensures that {A k } is a Cauchy sequence in CB(X). As we know that if X is complete, then CB(X) is also complete. Therefore, there exist z ∈ X and A ∈ CB(X) such that y k  → z and A k  → A. Moreover, g x2k+1 → z and f2k+2 → z, since

d(z,A)= lim k d( y k , A k ) lim k H( A k 1 , A k )=0.
(17)

It follows that z ∈ A, since A is closed. Thus, we have

lim k g x 2 k + 1 = z A = lim k S x 2 k and
lim k f x 2 k + 2 = z A = lim k T x 2 k + 1

As g, T and f, S are R-weakly commuting, we have

d ( gf x 2 k + 2 , Tg x 2 k + 1 ) H ( gT x 2 k + 1 , Tg x 2 k + 1 ) Rd ( g x 2 k + 1 , T x 2 k + 1 ) .
(18)
d(fg x 2 k + 1 ,Sf x 2 k )H(fS x 2 k ,Sf x 2 k )Rd(f x 2 k ,S x 2 k ).
(19)

Letting k →  in (18) and (19) and using (17) and the continuity of f, g, T, and S, we get

gz Tz and fz Sz.

By condition (ii) of Theorem 1, we have g g z = g z, f g z = g z. Let v = g z and then we have g v = v = f v. From (2), we have

H ( Sv , Tz ) ϕ ( max { d ( fv , gz ) , min { d ( fv , Tz ) , d ( gz , Sv ) } } ) × max { d ( fv , gz ) , min { d ( fv , Tz ) , d ( gz , Sv ) } } + φ ( min { d ( fv , gz ) , d ( fv , Tv ) , d ( gz , Sz ) , d ( fv , Tz ) , d ( gz , Sv ) } ) × min { d ( fv , gz ) , d ( fv , Tv ) , d ( gz , Sz ) , d ( fv , Tz ) , d ( gz , Sv ) } .

Note that f v = g z and f v ∈ T z. Hence, we have H(S v, T z) = 0, i.e., S v = T z. Again from (2), we have

H ( Sv , Tv ) ϕ ( max { d ( fv , gv ) , min { d ( fv , Tv ) , d ( gv , Sv ) } } ) × max { d ( fv , gv ) , min { d ( fv , Tv ) , d ( gv , Sv ) } } + φ ( min { d ( fv , gv ) , d ( fv , Tv ) , d ( gv , Sv ) , d ( fv , Tv ) , d ( gv , Sv ) } ) × min { d ( fv , gv ) , d ( fv , Tv ) , d ( gv , Sv ) , d ( fv , Tv ) , d ( gv , Sv ) } .

Note that f v = g v and g v ∈ S v. Hence, we have H(S v, T v) = 0, i.e., S v = T v. Therefore, we have v = f v = g v ∈ S v = T v. □

Remark 2

Theorem 1 improves and extends some known results of Kamran [12], Nadler [13], Hu [14], Kaneko [15], and Mizoguchi and Takahashi [16].

Example 1

Let X = [0, ) be endowed with the metric

d(x,y)= x + y if x y , 0 if x = y.
(20)

Define T, S:X → C B(X) and f, g:X → X by Tx=[0, x 3 ], S x = {0}, fx= 3 x 2 , and gx= x 2 for all x ∈ X. Let ϕ(t)= 2 t 3 and φ(t) = t for all t ≥ 0. It is easy to show that S is the extended hybrid generalized multi-valued f contraction. It is easy to check that all the conditions of Theorem 1 hold, and 0 is a common fixed point of f, g, T, and S.