Hybrid generalized contractions

Muhammad Usman Ali ${ }^{1 *}$ and Tayyab Kamran²

Abstract

Sintunavarat and Kumam introduced the notion of hybrid generalized multi-valued contraction mapping and established a common fixed point theorem. We extend their result for four mappings and prove common coincidence and common fixed point theorem.

Keywords: Common fixed points, Coincidence points, R-weakly commuting MSC 2000: 47H10,54H25

Introduction and preliminaries

Alber and Guerre-Delabriere [1] introduced the concept of weak contraction in Hilbert spaces. Rhoades [2] has shown that the result concluded by Alber and GuerreDelabriere in [1] is also valid in complete metric spaces. Berinde and Berinde [3] extended weak contraction for multi-valued mappings and introduced the notion of multi-valued (θ, L)-weak contraction and multi-valued (α, L)-weak contraction. Kamran [4] extended these contractions for hybrid pair of mappings and introduced multi-valued (f, θ, L)-weak contraction and multi-valued (f, α, L)-weak contraction. Sintunavarat and Kumam [5] introduced the notion of generalized (f, α, β)-weak contraction to extend the notion of multi-valued (f, α, L) weak contraction. They further extended the notion of generalized (f, α, β)-weak contraction by introducing hybrid generalized multi-valued contraction mappings and established a common fixed point theorem [6]. The purpose of this paper is to extend the notion of hybrid generalized multi-valued contraction and to prove common coincidence and common fixed point theorems.
Let (X, d) be a metric space. For $x \in X$ and $A \subseteq X$, $d(x, A)=\inf \{d(x, y): y \in A\}$. We denote by $\mathrm{CB}(X)$ the class of all nonempty closed and bounded subsets of X. For every $A, B \in \mathrm{CB}(X)$

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\} .
$$

[^0]Such a map H is called Hausdorff metric induced by d. A point $x \in X$ is said to be a common fixed point of f : $X \rightarrow X$ and $T: X \rightarrow \mathrm{CB}(X)$ if $x=f x \in T x$. The point $x \in X$ is said to be a coincidence point of $f: X \rightarrow X$ and $T: X \rightarrow \mathrm{CB}(X)$ if $f x \in T x$. Some works for hybrid pair are available in [7-10].
The mappings $f: X \rightarrow X$ and $T: X \rightarrow \mathrm{CB}(X)$ are called R-weakly commuting [11,12] if for all $x \in X, f T x \in$ $\mathrm{CB}(X)$, and there exists a positive real number R such that $H(f T x, T f x) \leq R d(f x, T x)$.

Lemma 1. [4] Let (X, d) be a metric space, $\left\{A_{k}\right\}$ be a sequence in $C B(X)$, and $\left\{x_{k}\right\}$ be a sequence in X such that $x_{k} \in A_{k-1}$. Let $\phi:[0, \infty) \rightarrow[0,1)$ be a function satisfying $\lim \sup _{r \rightarrow t^{+}} \phi(r)<1$ for every $t \in[0, \infty)$. Suppose $d\left(x_{k-1}, x_{k}\right)$ to be a nonincreasing sequence such that

$$
\begin{aligned}
& H\left(A_{k-1}, A_{k}\right) \leq \phi\left(d\left(x_{k-1}, x_{k}\right)\right) d\left(x_{k-1}, x_{k}\right) \\
& d\left(x_{k+1}, x_{k}\right) \leq H\left(A_{k-1}, A_{k}\right)+\phi^{n_{k}}\left(d\left(x_{k-1}, x_{k}\right)\right)
\end{aligned}
$$

where $n_{1}<n_{2}<\ldots, k, n_{k} \in \mathbb{N}$. Then, $\left\{x_{k}\right\}$ is a Cauchy sequence in X.

Lemma 2. [13] If $A, B \in C B(X)$ and $a \in A$, then for each $\epsilon>0$, there exists $b \in B$ such that

$$
d(a, b) \leq H(A, B)+\epsilon
$$

Definition 1. [6] Let (X, d) be a metric space, $f: X \rightarrow X$ be a single-valued mapping, and $T: X \rightarrow \mathrm{CB}(X)$ be a multi-valued mapping. T is said to be a hybrid generalized multi-valued contraction mapping if and only if there exist two functions $\phi:[0, \infty) \rightarrow[0,1)$ satisfying
$\limsup _{r \rightarrow t^{+}} \phi(r)<1$ for every $t \in[0, \infty)$ and φ : $[0, \infty) \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
H(T x, T y) \leq \phi(M(x, y)) M(x, y)+\varphi(N(x, y)) N(x, y), \tag{1}
\end{equation*}
$$

for each $x, y \in X$,
where

$$
M(x, y)=\max \{d(f x, f y), d(f y, T x)\}
$$

and

$$
\begin{aligned}
& N(x, y)=\min \{d(f x, f y), d(f x, T x), d(f y, T y), d(f x, T y), \\
& d(f y, T x)\} .
\end{aligned}
$$

Main results

Definition 2. Let (X, d) be a metric space, $f, g: X \rightarrow$ X and $T: X \rightarrow \mathrm{CB}(X)$. A mapping $S: X \rightarrow \mathrm{CB}(X)$ is said to be an extended hybrid generalized multi-valued f contraction if and only if there exist two functions ϕ : $[0, \infty) \rightarrow[0,1)$ satisfying $\lim \sup _{r \rightarrow t^{+}} \phi(r)<1$ for every $t \in[0, \infty)$ and $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
H(S x, T y) \leq \phi(M(x, y)) M(x, y)+\varphi(N(x, y)) N(x, y), \tag{2}
\end{equation*}
$$

for each $x, y \in X$,
where

$$
M(x, y)=\max \{d(f x, g y), \min \{d(f x, T y), d(g y, S x)\}\}
$$

and

$$
\begin{aligned}
& N(x, y)=\min \{d(f x, g y), d(f x, T x), d(g y, S y), d(f x, T y), \\
& d(g y, S x)\}
\end{aligned}
$$

Remark 1. If $f=g$ and $T=S$, then Definition 2 reduces to Definition 1.

Lemma 3. Let (X, d) be a metric space, $f, g: X \rightarrow X$ and $T: X \rightarrow C B(X)$. Let $S: X \rightarrow C B(X)$ be the extended hybrid generalized multi-valued f contraction. Let $\left\{g x_{2 k+1}\right\}$ be a g-orbit of S at x_{0} and $\left\{f x_{2 k+2}\right\}$ be an f-orbit of T at x_{1} such that

$$
\begin{equation*}
d\left(y_{k+1}, y_{k+2}\right) \leq H\left(A_{k}, A_{k+1}\right)+\phi^{n_{k+1}}\left(M\left(x_{k}, x_{k+1}\right)\right), \tag{3}
\end{equation*}
$$

for each $k \in\{0,2,4,6, \ldots\}$, and

$$
\begin{equation*}
d\left(y_{k+2}, y_{k+1}\right) \leq H\left(A_{k+1}, A_{k}\right)+\phi^{n_{k+1}}\left(M\left(x_{k+1}, x_{k}\right)\right), \tag{4}
\end{equation*}
$$

for each $k \in\{1,3,5, \ldots\}$, where $y_{2 k+1}=g x_{2 k+1} \in S x_{2 k}=$ $A_{2 k}, y_{2 k+2}=f x_{2 k+2} \in T x_{2 k+1}=A_{2 k+1}$, for each $k \geq 0$. Further, $n_{1}<n_{2}<\ldots$ and $\left\{d\left(y_{k}, y_{k+1}\right)\right\}$ is a nonincreasing sequence. Then, $\left\{y_{k}\right\}$ is a Cauchy sequence in X.

Proof. Let $y_{0}=x_{0}$. Then, we construct a sequence $\left\{y_{k}\right\}$ in X, A_{k} in $\mathrm{CB}(X)$ such that $y_{2 k+1}=g x_{2 k+1} \in S x_{2 k}=A_{2 k}$ and $y_{2 k+2}=f x_{2 k+1} \in T x_{2 k+1}=A_{2 k+1}$.
For $k \in\{0,2,4,6, \ldots\}$, it follows from the extended hybrid generalized multi-valued f contraction that

```
\(H\left(A_{k}, A_{k+1}\right)\)
    \(=H\left(S x_{k}, T x_{k+1}\right)\);
    \(\leq \phi\left(M\left(x_{k}, x_{k+1}\right)\right) M\left(x_{k}, x_{k+1}\right)\)
        \(+\varphi\left(N\left(x_{k}, x_{k+1}\right)\right) N\left(x_{k}, x_{k+1}\right) ;\)
    \(=\phi\left(\max \left\{d\left(f x_{k}, g x_{k+1}\right), \min \left\{d\left(f x_{k}, T x_{k+1}\right)\right.\right.\right.\),
        \(\left.\left.\left.d\left(g x_{k+1}, S x_{k}\right)\right\}\right\}\right)\)
        \(\times \max \left\{d\left(f x_{k}, g x_{k+1}\right), \min \left\{d\left(f x_{k}, T x_{k+1}\right)\right.\right.\),
        \(\left.\left.d\left(g x_{k+1}, S x_{k}\right)\right\}\right\}\)
        \(+\varphi\left(\min \left\{d\left(f x_{k}, g x_{k+1}\right), d\left(f x_{k}, T x_{k}\right), d\left(g x_{k+1}, S x_{k+1}\right)\right.\right.\),
        \(\left.\left.d\left(f x_{k}, T x_{k+1}\right), d\left(g x_{k+1}, S x_{k}\right)\right\}\right) \min \left\{d\left(f x_{k}, g x_{k+1}\right)\right.\),
        \(d\left(f x_{k}, T x_{k}\right), d\left(g x_{k+1}, S x_{k+1}\right), d\left(f x_{k}, T x_{k+1}\right)\),
        \(\left.d\left(g x_{k+1}, S x_{k}\right)\right\} ;\)
    \(=\phi\left(d\left(f x_{k}, g x_{k+1}\right)\right) d\left(f x_{k}, g x_{k+1}\right)\);
    \(=\phi\left(d\left(y_{k}, y_{k+1}\right)\right) d\left(y_{k}, y_{k+1}\right)\).
```

Similarly, we show that for $k=\{1,3,5, \ldots\}$, we have

$$
H\left(A_{k+1}, A_{k}\right) \leq \phi\left(d\left(y_{k+1}, y_{k}\right)\right) d\left(y_{k+1}, y_{k}\right)
$$

By (3), for $k \in\{0,2,4,6, \ldots\}$, we have

$$
\begin{aligned}
d\left(y_{k+1}, y_{k+2}\right) & =d\left(g x_{k+1}, f x_{k+2}\right) ; \\
\leq & H\left(S x_{k}, T x_{k+1}\right)+\phi^{n_{k+1}}\left(M\left(x_{k}, x_{k+1}\right)\right) \\
& =H\left(A_{k}, A_{k+1}\right)+\phi^{n_{k+1}}\left(\operatorname { m a x } \left\{d\left(f x_{k}, g x_{k+1}\right),\right.\right. \\
& \left.\left.\min \left\{d\left(f x_{k}, T x_{k+1}\right), d\left(g x_{k+1}, S x_{k}\right)\right\}\right\}\right) \\
= & H\left(A_{k}, A_{k+1}\right)+\phi^{n_{k+1}}\left(d\left(f x_{k}, g x_{k+1}\right)\right) ; \\
= & H\left(A_{k}, A_{k+1}\right)+\phi^{n_{k+1}}\left(d\left(y_{k}, y_{k+1}\right)\right) .
\end{aligned}
$$

Similarly, for $k=\{1,3,5, \ldots\}$, we have

$$
d\left(y_{k+2}, y_{k+1}\right) \leq H\left(A_{k+1}, A_{k}\right)+\phi^{n_{k+1}}\left(d\left(y_{k+1}, y_{k}\right)\right) .
$$

Given that $\left\{d\left(y_{k}, y_{k+1}\right)\right\}$ is a nonincreasing sequence, thus, all the conditions of Lemma 1 are satisfied. Hence, $\left\{y_{k}\right\}$ is a Cauchy sequence in X.

Theorem 1. Let (X, d) be a complete metric space, f, g : $X \rightarrow X, T: X \rightarrow C B(X)$ are continuous mappings, and $S:$ $X \rightarrow C B(X)$ is a continuous extended hybrid generalized multi-valued f contraction such that $S X \subseteq g X$ and $T X \subseteq$ fX. Then,
(i) if g, T and f, S are R-weakly commuting, then g, T and f, S have a common coincidence point say z.
(ii) Moreover, if $g g z=g z, f g z=g z$, then f, g, T, and S have a common fixed point.

Proof. Let x_{0} be an arbitrary point in X and $y_{0}=f x_{0}$. Then, we construct a sequence $\left\{y_{k}\right\}$ in X, A_{k} in $\operatorname{CB}(X)$ respectively as follows. Since $S X \subseteq g X$, there exists a point
$x_{1} \in X$ such that $y_{1}=g x_{1} \in S x_{0}=A_{0}$. We can choose a positive integer n_{1} such that

$$
\begin{equation*}
\phi^{n_{1}}\left(d\left(y_{0}, y_{1}\right)\right) \leq\left[1-\phi\left(M\left(x_{0}, x_{1}\right)\right)\right] M\left(x_{0}, x_{1}\right) . \tag{5}
\end{equation*}
$$

Since $T X \subseteq f X$, there exists $y_{2}=f x_{2} \in T x_{1}=A_{1}$ such that

$$
\begin{equation*}
d\left(y_{1}, y_{2}\right) \leq H\left(S x_{0}, T x_{1}\right)+\phi^{n_{1}}\left(d\left(y_{0}, y_{1}\right)\right) . \tag{6}
\end{equation*}
$$

Using (5) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$
\begin{aligned}
d\left(y_{1}, y_{2}\right) \leq & H\left(S x_{0}, T x_{1}\right)+\phi^{n_{1}}\left(d\left(y_{0}, y_{1}\right)\right) ; \\
\leq & \phi\left(M\left(x_{0}, x_{1}\right)\right) M\left(x_{0}, x_{1}\right) \\
& +\varphi\left(N\left(x_{0}, x_{1}\right)\right) N\left(x_{0}, x_{1}\right) \\
& +\left[1-\phi\left(M\left(x_{0}, x_{1}\right)\right)\right] M\left(x_{0}, x_{1}\right) ; \\
= & M\left(x_{0}, x_{1}\right) ; \\
= & \left.\left.\min \left\{d\left(f x_{k}, T x_{k+1}\right), d\left(g x_{k+1}, S x_{k}\right)\right\}\right\}\right) ; \\
= & d\left(f x_{0}, g x_{1}\right) ; \\
= & d\left(y_{0}, y_{1}\right) .
\end{aligned}
$$

Now, we can choose a positive integer $n_{2}>n_{1}$ such that

$$
\begin{equation*}
\phi^{n_{2}}\left(d\left(y_{2}, y_{1}\right)\right) \leq\left[1-\phi\left(M\left(x_{2}, x_{1}\right)\right)\right] M\left(x_{2}, x_{1}\right) \tag{7}
\end{equation*}
$$

There exists $y_{3}=g x_{3} \in S x_{2}=A_{2}$ such that

$$
\begin{equation*}
d\left(y_{3}, y_{2}\right) \leq H\left(S x_{2}, T x_{1}\right)+\phi^{n_{2}}\left(d\left(y_{2}, y_{1}\right)\right) . \tag{8}
\end{equation*}
$$

Using (7) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$
\begin{aligned}
d\left(y_{3}, y_{2}\right) \leq & H\left(S x_{2}, T x_{1}\right)+\phi^{n_{2}}\left(d\left(y_{2}, y_{1}\right)\right) ; \\
\leq & \phi\left(M\left(x_{2}, x_{1}\right)\right) M\left(x_{2}, x_{1}\right) \\
& +\varphi\left(N\left(x_{2}, x_{1}\right)\right) N\left(x_{2}, x_{1}\right) \\
& +\left[1-\phi\left(M\left(x_{2}, x_{1}\right)\right)\right] M\left(x_{2}, x_{1}\right) ; \\
= & M\left(x_{2}, x_{1}\right) ; \\
= & \max \left\{d\left(f x_{2}, g x_{1}\right), \min \left\{d\left(f x_{2}, T x_{1}\right),\right.\right. \\
& \left.\left.d\left(g x_{1}, S x_{2}\right)\right\}\right\} ; \\
= & d\left(f x_{2}, g x_{1}\right) ; \\
= & d\left(y_{2}, y_{1}\right) .
\end{aligned}
$$

Now, we can choose a positive integer $n_{3}>n_{2}$ such that

$$
\begin{equation*}
\phi^{n_{3}}\left(d\left(y_{2}, y_{3}\right)\right) \leq\left[1-\phi\left(M\left(x_{2}, x_{3}\right)\right)\right] M\left(x_{2}, x_{3}\right) . \tag{9}
\end{equation*}
$$

There exists $y_{4}=f x_{4} \in T x_{3}=A_{3}$ such that

$$
\begin{equation*}
d\left(y_{3}, y_{4}\right) \leq H\left(S x_{2}, T x_{3}\right)+\phi^{n_{3}}\left(d\left(y_{2}, y_{3}\right)\right) . \tag{10}
\end{equation*}
$$

Using (9) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$
\begin{aligned}
d\left(y_{3}, y_{4}\right) \leq & H\left(S x_{2}, T x_{3}\right)+\phi^{n_{3}}\left(d\left(y_{2}, y_{3}\right)\right) ; \\
\leq & \phi\left(M\left(x_{2}, x_{3}\right)\right) M\left(x_{2}, x_{3}\right) \\
& +\varphi\left(N\left(x_{2}, x_{3}\right)\right) N\left(x_{2}, x_{3}\right) \\
& +\left[1-\phi\left(M\left(x_{2}, x_{3}\right)\right)\right] M\left(x_{2}, x_{3}\right) ; \\
= & M\left(x_{2}, x_{3}\right) ; \\
= & \max \left\{d\left(f x_{2}, g x_{3}\right), \min \left\{d\left(f x_{2}, T x_{3}\right),\right.\right. \\
& \left.\left.d\left(g x_{3}, S x_{2}\right)\right\}\right\} ; \\
= & d\left(f x_{2}, g x_{3}\right) ; \\
= & d\left(y_{2}, y_{3}\right) .
\end{aligned}
$$

Now, we can choose a positive integer $n_{4}>n_{3}$ such that

$$
\begin{equation*}
\phi^{n_{4}}\left(d\left(y_{4}, y_{3}\right)\right) \leq\left[1-\phi\left(M\left(x_{4}, x_{3}\right)\right)\right] M\left(x_{4}, x_{3}\right) . \tag{11}
\end{equation*}
$$

There exists $y_{5}=g x_{5} \in S x_{4}=A_{4}$ such that

$$
\begin{equation*}
d\left(y_{5}, y_{4}\right) \leq H\left(S x_{4}, T x_{3}\right)+\phi^{n_{4}}\left(d\left(y_{4}, y_{3}\right)\right) . \tag{12}
\end{equation*}
$$

Using (11) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$
\begin{aligned}
d\left(y_{5}, y_{4}\right) \leq & H\left(S x_{4}, T x_{3}\right)+\phi^{n_{4}}\left(d\left(y_{4}, y_{3}\right)\right) ; \\
\leq & \phi\left(M\left(x_{4}, x_{3}\right)\right) M\left(x_{4}, x_{3}\right) \\
& +\varphi\left(N\left(x_{4}, x_{3}\right)\right) N\left(x_{4}, x_{3}\right) \\
& +\left[1-\phi\left(M\left(x_{4}, x_{3}\right)\right)\right] M\left(x_{4}, x_{3}\right) ; \\
= & M\left(x_{4}, x_{3}\right) ; \\
= & \max \left\{d\left(f x_{4}, g x_{3}\right), \min \left\{d\left(f x_{4}, T x_{3}\right),\right.\right. \\
& \left.\left.d\left(g x_{3}, S x_{4}\right)\right\}\right\} ; \\
= & d\left(f x_{4}, g x_{3}\right) ; \\
= & d\left(y_{4}, y_{3}\right) .
\end{aligned}
$$

By repeating this process for all $k \in \mathbb{W}$, we have the following:

Case (i). For $k \in\{0,2,4,6, \ldots\}$, we can choose a positive integer n_{k+1} such that

$$
\begin{equation*}
\phi^{n_{k+1}}\left(d\left(y_{k}, y_{k+1}\right)\right) \leq\left[1-\phi\left(M\left(x_{k}, x_{k+1}\right)\right)\right] M\left(x_{k}, x_{k+1}\right) . \tag{13}
\end{equation*}
$$

There exists $y_{k+2}=f x_{k+2} \in T x_{k+1}=A_{k+1}$ such that

$$
\begin{equation*}
d\left(y_{k+1}, y_{k+2}\right) \leq H\left(S x_{k}, T x_{k+1}\right)+\phi^{n_{k+1}}\left(d\left(y_{k}, y_{k+1}\right)\right) \tag{14}
\end{equation*}
$$

Using (13) and the notion of extended generalized multivalued f contraction in the above inequality, we have

$$
\begin{aligned}
d\left(y_{k+1}, y_{k+2}\right) \leq & H\left(S x_{k}, T x_{k+1}\right)+\phi^{n_{k+1}}\left(d\left(y_{k}, y_{k+1}\right)\right) \\
\leq & \phi\left(M\left(x_{k}, x_{k+1}\right)\right) M\left(x_{k}, x_{k+1}\right) \\
& +\varphi\left(N\left(x_{k}, x_{k+1}\right)\right) N\left(x_{k}, x_{k+1}\right) \\
& +\left[1-\phi\left(M\left(x_{k}, x_{k+1}\right)\right)\right] M\left(x_{k}, x_{k+1}\right) ; \\
= & M\left(x_{k}, x_{k+1}\right) \\
= & \max \left\{d\left(f x_{k}, g x_{k+1}\right), \min \left\{d\left(f x_{k}, T x_{k+1}\right),\right.\right. \\
& \left.\left.d\left(g x_{k+1}, S x_{k}\right)\right\}\right\} \\
= & d\left(f x_{k}, g x_{k+1}\right) ; \\
= & d\left(y_{k}, y_{k+1}\right) .
\end{aligned}
$$

Case (ii). For $k \in\{1,3,5,7, \ldots\}$, we can choose a positive integer n_{k} such that

$$
\begin{equation*}
\phi^{n_{k+1}}\left(d\left(y_{k+1}, y_{k}\right)\right) \leq\left[1-\phi\left(M\left(x_{k+1}, x_{k}\right)\right)\right] M\left(x_{k+1}, x_{k}\right) . \tag{15}
\end{equation*}
$$

There exists $y_{k+2}=g x_{k+2} \in S x_{k+1}=A_{k+1}$ such that

$$
\begin{equation*}
d\left(y_{k+2}, y_{k+1}\right) \leq H\left(S x_{k+1}, T x_{k}\right)+\phi^{n_{k+1}}\left(d\left(y_{k+1}, y_{k}\right)\right) . \tag{16}
\end{equation*}
$$

Using (15) and the notion of extended generalized multivalued f contraction in the above inequality, we have

$$
\begin{aligned}
d\left(y_{k+2}, y_{k+1}\right) \leq & H\left(S x_{k+1}, T x_{k}\right)+\phi^{n_{k+1}}\left(d\left(y_{k+1}, y_{k}\right)\right) \\
\leq & \phi\left(M\left(x_{k+1}, x_{k}\right)\right) M\left(x_{k+1}, x_{k}\right) \\
& +\varphi\left(N\left(x_{k+1}, x_{k}\right)\right) N\left(x_{k+1}, x_{k}\right) \\
& +\left[1-\phi\left(M\left(x_{k+1}, x_{k}\right)\right)\right] M\left(x_{k+1}, x_{k}\right) \\
= & M\left(x_{k+1}, x_{k}\right) ; \\
= & \max \left\{d\left(f x_{k+1}, g x_{k}\right), \min \left\{d\left(f x_{k+1}, T x_{k}\right),\right.\right. \\
& \left.\left.d\left(g x_{k}, S x_{k+1}\right)\right\}\right\} \\
= & d\left(f x_{k+1}, g x_{k}\right) \\
= & d\left(y_{k+1}, y_{k}\right)
\end{aligned}
$$

Hence, $\left\{d\left(y_{k}, y_{k+1}\right)\right\}$ is a nonincreasing sequence for each $k \geq 0$. Thus, by Lemma $3,\left\{y_{k}\right\}$ is a Cauchy sequence in X. Then, (2) ensures that $\left\{A_{k}\right\}$ is a Cauchy sequence in $\mathrm{CB}(X)$. As we know that if X is complete, then $\mathrm{CB}(X)$ is also complete. Therefore, there exist $z \in X$ and $A \in \mathrm{CB}(X)$ such that $y_{k} \rightarrow z$ and $A_{k} \rightarrow A$. Moreover, $g x_{2 k+1} \rightarrow z$ and $f_{2 k+2} \rightarrow z$, since

$$
\begin{equation*}
d(z, A)=\lim _{k \rightarrow \infty} d\left(y_{k}, A_{k}\right) \leq \lim _{k \rightarrow \infty} H\left(A_{k-1}, A_{k}\right)=0 \tag{17}
\end{equation*}
$$

It follows that $z \in A$, since A is closed. Thus, we have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} g x_{2 k+1}=z \in A=\lim _{k \rightarrow \infty} S x_{2 k} \text { and } \\
& \lim _{k \rightarrow \infty} f x_{2 k+2}=z \in A=\lim _{k \rightarrow \infty} T x_{2 k+1}
\end{aligned}
$$

As g, T and f, S are R-weakly commuting, we have

$$
\begin{align*}
d\left(g f x_{2 k+2}, T g x_{2 k+1}\right) & \leq H\left(g T x_{2 k+1}, T g x_{2 k+1}\right) \tag{18}\\
& \leq R d\left(g x_{2 k+1}, T x_{2 k+1}\right) \\
d\left(f g x_{2 k+1}, S f x_{2 k}\right) \leq & H\left(f S x_{2 k}, S f x_{2 k}\right) \leq R d\left(f x_{2 k}, S x_{2 k}\right) \tag{19}
\end{align*}
$$

Letting $k \rightarrow \infty$ in (18) and (19) and using (17) and the continuity of f, g, T, and S, we get
$g z \in T z$ and $f z \in S z$.
By condition (ii) of Theorem 1, we have $g g z=g z, f g z=g z$. Let $v=g z$ and then we have $g v=v=f v$. From (2), we have

$$
\begin{aligned}
H(S v, T z) \leq & \phi(\max \{d(f v, g z), \\
& \min \{d(f v, T z), d(g z, S v)\}\}) \\
\times & \max \{d(f v, g z) \\
& \min \{d(f v, T z), d(g z, S v)\}\} \\
+ & \varphi(\min \{d(f v, g z), d(f v, T v), d(g z, S z), \\
& d(f v, T z), d(g z, S v)\}) \\
\times & \min \{d(f v, g z), d(f v, T v), d(g z, S z) \\
& d(f v, T z), d(g z, S v)\}
\end{aligned}
$$

Note that $f v=g z$ and $f v \in T z$. Hence, we have $H(S v, T z)=0$, i.e., $S v=T z$. Again from (2), we have

$$
\begin{aligned}
H(S v, T v) \leq & \phi(\max \{d(f v, g v) \\
& \min \{d(f v, T v), d(g v, S v)\}\}) \\
\times & \max \{d(f v, g v) \\
& \min \{d(f v, T v), d(g v, S v)\}\} \\
+ & \varphi(\min \{d(f v, g v), d(f v, T v), d(g v, S v), \\
& d(f v, T v), d(g v, S v)\}) \\
\times & \min \{d(f v, g v), d(f v, T v), d(g v, S v) \\
& d(f v, T v), d(g v, S v)\}
\end{aligned}
$$

Note that $f v=g \nu$ and $g \nu \in S v$. Hence, we have $H(S v, T v)=0$, i.e., $S v=T v$. Therefore, we have $v=f v=g v \in S v=T v$.

Remark 2. Theorem 1 improves and extends some known results of Kamran [12], Nadler [13], Hu [14], Kaneko [15], and Mizoguchi and Takahashi [16].

Example 1. Let $X=[0, \infty)$ be endowed with the metric

$$
d(x, y)=\left\{\begin{array}{l}
x+y \text { if } x \neq y \tag{20}\\
0 \text { if } x=y
\end{array}\right.
$$

Define $T, S: X \rightarrow C B(X)$ and $f, g: X \rightarrow X$ by $T x=\left[0, \frac{x}{3}\right]$, $S x=\{0\}, f x=\frac{3 x}{2}$, and $g x=\frac{x}{2}$ for all $x \in X$. Let $\phi(t)=\frac{2 t}{3}$ and $\varphi(t)=t$ for all $t \geq 0$. It is easy to show that S is the
extended hybrid generalized multi-valued f contraction. It is easy to check that all the conditions of Theorem 1 hold, and 0 is a common fixed point off, g, T, and S.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MUA and TK contributed equally in this article. Both authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to the referees for their valuable comments and to Islamic Azad University for the coverage of article processing charges in Mathematical Sciences.

Author details

${ }^{1}$ Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan. ${ }^{2}$ Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan.

Received: 4 April 2013 Accepted: 10 May 2013
Published: 26 May 2013

References

1. Alber, Yl, Guerre-Delabriere, S : Principles of weakly contractive maps in Hilbert spaces. Oper. Theory Adv. Appl. 98, 7-22 (1997)
2. Rhoades, SG: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683-2693 (2001)
3. Berinde, M, Berinde, V : On general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326, 772-782 (2007)
4. Kamran, T: Multi-valued f-weakly Picard mappings. Nonlinear Anal. 67, 2289-2296 (2007)
5. Sintunavarat, W, Kumam, P: Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings. Appl. Math. Lett. 24, 411-421 (2011)
6. Sintunavarat, W, Kumam, P: Common fixed point theorem for hybrid generalized multi-valued contraction mappings. Appl. Math. Lett. 25, 52-57 (2012)
7. Samet, B, Vetro, C: Comments on the paper "Coincidence theorems for some multivalued mappings" by B. E. Rhoades, S.L. Singh and C. Kulshrestha. Fasc. Math. 47, 89-94 (2011)
8. Sintunavarat, W, Kumam, P, Patthanangkoor, P: Common random fixed points for multivalued random operators without S- and T-weakly commuting random operators. Rand. Oper. Stoc. Eqs. 17, 381-388 (2009)
9. Sintunavarat, W, Kumam, P: Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition. Appl. Math. Lett. 22, 1877-1881 (2009)
10. Kamran, T: Coincidence and fixed point for hybrid strict contractions. J. Math. Anal. Appl. 299, 235-241 (2004)
11. Shahzad, N, Kamran, T: Coincidence points and R-weakly commuting maps. Arch. Math. 37, 179-183 (2001)
12. Kamran, T: Common coincidence points of R-weakly commuting maps. Int. J. Math. Math. Sci. 26, 179-182 (2001)
13. Nadler, SB: Multi-valued contraction mappings. Pacific J. Math. 30, 475-488 (1969)
14. Hu, T: Fixed point theorems for multivalued mappings. Canad. Math. Bull. 23, 193-197 (1980)
15. Kaneko, H: Single-valued and multi-valued f-contractions. Boll. Un. Mat. Ital. A(6). 4, 29-33 (1985)
16. Mizoguchi, N, Takahashi, W: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177-188 (1989)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: *Correspondence: muh_usman_ali@yahoo.com
 ${ }^{1}$ Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
 Full list of author information is available at the end of the article

[^1]: doi:10.1186/2251-7456-7-29
 Cite this article as: Ali and Kamran: Hybrid generalized contractions. Mathematical Sciences 2013 7:29.

