
Ali and KamranMathematical Sciences 2013, 7:29
http://www.iaumath.com/content/7/1/29

ORIGINAL RESEARCH Open Access

Hybrid generalized contractions
Muhammad Usman Ali1* and Tayyab Kamran2

Abstract

Sintunavarat and Kumam introduced the notion of hybrid generalized multi-valued contraction mapping and
established a common fixed point theorem. We extend their result for four mappings and prove common
coincidence and common fixed point theorem.
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Introduction and preliminaries
Alber and Guerre-Delabriere [1] introduced the concept
of weak contraction in Hilbert spaces. Rhoades [2] has
shown that the result concluded by Alber and Guerre-
Delabriere in [1] is also valid in complete metric spaces.
Berinde and Berinde [3] extended weak contraction for
multi-valued mappings and introduced the notion of
multi-valued (θ , L)-weak contraction and multi-valued
(α, L)-weak contraction. Kamran [4] extended these con-
tractions for hybrid pair of mappings and introduced
multi-valued (f , θ , L)-weak contraction and multi-valued
(f ,α, L)-weak contraction. Sintunavarat and Kumam [5]
introduced the notion of generalized (f ,α,β)-weak con-
traction to extend the notion of multi-valued (f ,α, L)-
weak contraction. They further extended the notion
of generalized (f ,α,β)-weak contraction by introducing
hybrid generalized multi-valued contraction mappings
and established a common fixed point theorem [6]. The
purpose of this paper is to extend the notion of hybrid gen-
eralized multi-valued contraction and to prove common
coincidence and common fixed point theorems.
Let (X, d) be a metric space. For x ∈ X and A ⊆ X,

d(x,A) = inf{d(x, y) : y ∈ A}. We denote by CB(X) the
class of all nonempty closed and bounded subsets ofX. For
every A, B ∈ CB(X)

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}.
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Such a map H is called Hausdorff metric induced by d.
A point x ∈ X is said to be a common fixed point of f :
X → X and T : X → CB(X) if x = fx ∈ Tx. The point
x ∈ X is said to be a coincidence point of f : X → X and
T : X → CB(X) if fx ∈ Tx. Some works for hybrid pair are
available in [7-10].
The mappings f : X → X and T : X → CB(X) are

called R-weakly commuting [11,12] if for all x ∈ X, fTx ∈
CB(X), and there exists a positive real number R such that
H(fTx,Tfx) ≤ Rd(fx,Tx).

Lemma 1. [4] Let (X, d) be a metric space, {Ak} be a
sequence in CB(X), and {xk} be a sequence in X such that
xk ∈ Ak−1. Let φ :[ 0,∞) →[ 0, 1) be a function satisfy-
ing lim supr→t+ φ(r) < 1 for every t ∈ [ 0,∞). Suppose
d(xk−1, xk) to be a nonincreasing sequence such that

H(Ak−1,Ak) ≤ φ(d(xk−1, xk))d(xk−1, xk),

d(xk+1, xk) ≤ H(Ak−1,Ak) + φnk (d(xk−1, xk)),

where n1 < n2 < . . ., k, nk ∈ N. Then, {xk} is a Cauchy
sequence in X.

Lemma 2. [13] If A,B ∈ CB(X) and a ∈ A, then for each
ε > 0, there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

Definition 1. [6] Let (X, d) be a metric space, f : X → X
be a single-valued mapping, and T : X → CB(X) be
a multi-valued mapping. T is said to be a hybrid gen-
eralized multi-valued contraction mapping if and only if
there exist two functions φ :[ 0,∞) →[ 0, 1) satisfying
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lim supr→t+ φ(r) < 1 for every t ∈ [ 0,∞) and ϕ :
[ 0,∞) →[ 0,∞) such that

H(Tx,Ty) ≤φ(M(x, y))M(x, y) + ϕ(N(x, y))N(x, y),
(1)

for each x, y ∈ X,

where

M(x, y) = max{d(fx, fy), d(fy,Tx)},
and

N(x, y) = min{d(fx, fy), d(fx,Tx), d(fy,Ty), d(fx,Ty),
d(fy,Tx)}.

Main results
Definition 2. Let (X, d) be a metric space, f , g : X →
X and T : X → CB(X). A mapping S : X → CB(X)

is said to be an extended hybrid generalized multi-valued
f contraction if and only if there exist two functions φ :
[ 0,∞) →[ 0, 1) satisfying lim supr→t+ φ(r) < 1 for every
t ∈ [ 0,∞) and ϕ :[ 0,∞) →[ 0,∞) such that

H(Sx,Ty) ≤φ(M(x, y))M(x, y) + ϕ(N(x, y))N(x, y),
(2)

for each x, y ∈ X,

where

M(x, y) = max{d(fx, gy), min{d(fx,Ty), d(gy, Sx)}},
and

N(x, y) = min{d(fx, gy), d(fx,Tx), d(gy, Sy), d(fx,Ty),
d(gy, Sx)}.

Remark 1. If f = g and T = S, then Definition 2 reduces
to Definition 1.

Lemma 3. Let (X, d) be a metric space, f , g : X → X and
T : X → CB(X). Let S : X → CB(X) be the extended
hybrid generalized multi-valued f contraction. Let {gx2k+1}
be a g-orbit of S at x0 and {fx2k+2} be an f-orbit of T at x1
such that

d(yk+1, yk+2) ≤ H(Ak ,Ak+1) + φnk+1(M(xk , xk+1)),
(3)

for each k ∈ {0, 2, 4, 6, . . .}, and
d(yk+2, yk+1) ≤ H(Ak+1,Ak) + φnk+1(M(xk+1, xk)),

(4)

for each k ∈ {1, 3, 5, . . .}, where y2k+1 = gx2k+1 ∈ Sx2k =
A2k, y2k+2 = fx2k+2 ∈ Tx2k+1 = A2k+1, for each k ≥ 0.
Further, n1 < n2 < . . . and {d(yk , yk+1)} is a nonincreasing
sequence. Then, {yk} is a Cauchy sequence in X.

Proof. Let y0 = x0. Then, we construct a sequence {yk}
in X, Ak in CB(X) such that y2k+1 = gx2k+1 ∈ Sx2k = A2k
and y2k+2 = fx2k+1 ∈ Tx2k+1 = A2k+1.
For k ∈ {0, 2, 4, 6, . . .}, it follows from the extended

hybrid generalized multi-valued f contraction that
H(Ak ,Ak+1)

= H(Sxk ,Txk+1);
≤ φ(M(xk , xk+1))M(xk , xk+1)

+ ϕ(N(xk , xk+1))N(xk , xk+1);
= φ(max{d(fxk , gxk+1), min{d(fxk ,Txk+1),

d(gxk+1, Sxk)}})
× max{d(fxk , gxk+1), min{d(fxk ,Txk+1),
d(gxk+1, Sxk)}}
+ ϕ(min{d(fxk , gxk+1), d(fxk ,Txk), d(gxk+1, Sxk+1),
d(fxk ,Txk+1), d(gxk+1, Sxk)})min{d(fxk , gxk+1),
d(fxk ,Txk), d(gxk+1, Sxk+1), d(fxk ,Txk+1),
d(gxk+1, Sxk)};

= φ(d(fxk , gxk+1))d(fxk , gxk+1);
= φ(d(yk , yk+1))d(yk , yk+1).

Similarly, we show that for k = {1, 3, 5, . . .}, we have
H(Ak+1,Ak) ≤ φ(d(yk+1, yk))d(yk+1, yk).

By (3), for k ∈ {0, 2, 4, 6, . . .}, we have
d(yk+1, yk+2) = d(gxk+1, fxk+2);

≤ H(Sxk ,Txk+1) + φnk+1(M(xk , xk+1));
= H(Ak ,Ak+1) + φnk+1(max{d(fxk , gxk+1),

min{d(fxk ,Txk+1), d(gxk+1, Sxk)}});
= H(Ak ,Ak+1) + φnk+1(d(fxk , gxk+1));
= H(Ak ,Ak+1) + φnk+1(d(yk , yk+1)).

Similarly, for k = {1, 3, 5, . . .}, we have
d(yk+2, yk+1) ≤ H(Ak+1,Ak) + φnk+1(d(yk+1, yk)).

Given that {d(yk , yk+1)} is a nonincreasing sequence, thus,
all the conditions of Lemma 1 are satisfied. Hence, {yk} is
a Cauchy sequence in X.

Theorem 1. Let (X, d) be a complete metric space, f , g :
X → X, T : X → CB(X) are continuous mappings, and S :
X → CB(X) is a continuous extended hybrid generalized
multi-valued f contraction such that SX ⊆ gX and TX ⊆
fX. Then,

(i) if g,T and f , S are R-weakly commuting, then g,T and
f , S have a common coincidence point say z.
(ii) Moreover, if ggz = gz, fgz = gz, then f , g,T, and S have

a common fixed point.

Proof. Let x0 be an arbitrary point in X and y0 = fx0.
Then, we construct a sequence {yk} in X, Ak in CB(X)

respectively as follows. Since SX ⊆ gX, there exists a point
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x1 ∈ X such that y1 = gx1 ∈ Sx0 = A0. We can choose a
positive integer n1 such that

φn1(d(y0, y1)) ≤[ 1 − φ(M(x0, x1))]M(x0, x1). (5)

Since TX ⊆ fX, there exists y2 = fx2 ∈ Tx1 = A1 such that

d(y1, y2) ≤ H(Sx0,Tx1) + φn1(d(y0, y1)). (6)

Using (5) and the notion of extended hybrid generalized
multi-valued f contraction in the above inequality, we
have

d(y1, y2) ≤ H(Sx0,Tx1) + φn1(d(y0, y1));
≤ φ(M(x0, x1))M(x0, x1)

+ ϕ(N(x0, x1))N(x0, x1)
+[ 1 − φ(M(x0, x1))]M(x0, x1);

= M(x0, x1);
= min{d(fxk ,Txk+1), d(gxk+1, Sxk)}});
= d(fx0, gx1);
= d(y0, y1).

Now, we can choose a positive integer n2 > n1 such that

φn2(d(y2, y1)) ≤[ 1 − φ(M(x2, x1))]M(x2, x1). (7)

There exists y3 = gx3 ∈ Sx2 = A2 such that

d(y3, y2) ≤ H(Sx2,Tx1) + φn2(d(y2, y1)). (8)

Using (7) and the notion of extended hybrid generalized
multi-valued f contraction in the above inequality, we
have

d(y3, y2) ≤ H(Sx2,Tx1) + φn2(d(y2, y1));
≤ φ(M(x2, x1))M(x2, x1)

+ ϕ(N(x2, x1))N(x2, x1)
+[ 1 − φ(M(x2, x1))]M(x2, x1);

= M(x2, x1);
= max{d(fx2, gx1), min{d(fx2,Tx1),

d(gx1, Sx2)}};
= d(fx2, gx1);
= d(y2, y1).

Now, we can choose a positive integer n3 > n2 such that

φn3(d(y2, y3)) ≤[ 1 − φ(M(x2, x3))]M(x2, x3). (9)

There exists y4 = fx4 ∈ Tx3 = A3 such that

d(y3, y4) ≤ H(Sx2,Tx3) + φn3(d(y2, y3)). (10)

Using (9) and the notion of extended hybrid generalized
multi-valued f contraction in the above inequality, we have

d(y3, y4) ≤ H(Sx2,Tx3) + φn3(d(y2, y3));
≤ φ(M(x2, x3))M(x2, x3)

+ ϕ(N(x2, x3))N(x2, x3)
+[ 1 − φ(M(x2, x3))]M(x2, x3);

= M(x2, x3);
= max{d(fx2, gx3), min{d(fx2,Tx3),

d(gx3, Sx2)}};
= d(fx2, gx3);
= d(y2, y3).

Now, we can choose a positive integer n4 > n3 such that

φn4(d(y4, y3)) ≤ [ 1 − φ(M(x4, x3))]M(x4, x3). (11)

There exists y5 = gx5 ∈ Sx4 = A4 such that

d(y5, y4) ≤ H(Sx4,Tx3) + φn4(d(y4, y3)). (12)

Using (11) and the notion of extended hybrid generalized
multi-valued f contraction in the above inequality, we
have

d(y5, y4) ≤ H(Sx4,Tx3) + φn4(d(y4, y3));
≤ φ(M(x4, x3))M(x4, x3)

+ ϕ(N(x4, x3))N(x4, x3)
+[ 1 − φ(M(x4, x3))]M(x4, x3);

= M(x4, x3);
= max{d(fx4, gx3), min{d(fx4,Tx3),

d(gx3, Sx4)}};
= d(fx4, gx3);
= d(y4, y3).

By repeating this process for all k ∈ W, we have the
following:

Case (i). For k ∈ {0, 2, 4, 6, . . .}, we can choose a positive
integer nk+1 such that

φnk+1(d(yk , yk+1)) ≤[ 1−φ(M(xk , xk+1))]M(xk , xk+1).
(13)

There exists yk+2 = fxk+2 ∈ Txk+1 = Ak+1 such that

d(yk+1, yk+2) ≤ H(Sxk ,Txk+1) + φnk+1(d(yk , yk+1)).
(14)
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Using (13) and the notion of extended generalized multi-
valued f contraction in the above inequality, we have

d(yk+1, yk+2) ≤ H(Sxk ,Txk+1) + φnk+1(d(yk , yk+1));
≤ φ(M(xk , xk+1))M(xk , xk+1)

+ ϕ(N(xk , xk+1))N(xk , xk+1)

+[ 1 − φ(M(xk , xk+1))]M(xk , xk+1);
= M(xk , xk+1);
= max{d(fxk , gxk+1), min{d(fxk ,Txk+1),

d(gxk+1, Sxk)}};
= d(fxk , gxk+1);
= d(yk , yk+1).

Case (ii). For k ∈ {1, 3, 5, 7, . . .}, we can choose a positive
integer nk such that

φnk+1(d(yk+1, yk)) ≤[ 1−φ(M(xk+1, xk))]M(xk+1, xk).
(15)

There exists yk+2 = gxk+2 ∈ Sxk+1 = Ak+1 such that

d(yk+2, yk+1) ≤ H(Sxk+1,Txk) + φnk+1(d(yk+1, yk)).
(16)

Using (15) and the notion of extended generalized multi-
valued f contraction in the above inequality, we have

d(yk+2, yk+1) ≤ H(Sxk+1,Txk) + φnk+1(d(yk+1, yk));
≤ φ(M(xk+1, xk))M(xk+1, xk)

+ ϕ(N(xk+1, xk))N(xk+1, xk)
+[ 1 − φ(M(xk+1, xk))]M(xk+1, xk);

= M(xk+1, xk);
= max{d(fxk+1, gxk), min{d(fxk+1,Txk),

d(gxk , Sxk+1)}};
= d(fxk+1, gxk);
= d(yk+1, yk).

Hence, {d(yk , yk+1)} is a nonincreasing sequence for each
k ≥ 0. Thus, by Lemma 3, {yk} is a Cauchy sequence in
X. Then, (2) ensures that {Ak} is a Cauchy sequence in
CB(X). As we know that if X is complete, then CB(X)

is also complete. Therefore, there exist z ∈ X and
A ∈ CB(X) such that yk → z and Ak → A. Moreover,
gx2k+1 → z and f2k+2 → z, since

d(z,A) = lim
k→∞

d(yk ,Ak) ≤ lim
k→∞

H(Ak−1,Ak) = 0.

(17)

It follows that z ∈ A, since A is closed. Thus, we have

lim
k→∞

gx2k+1 = z ∈ A = lim
k→∞

Sx2k and

lim
k→∞

fx2k+2 = z ∈ A = lim
k→∞

Tx2k+1

As g,T and f , S are R-weakly commuting, we have

d(gfx2k+2,Tgx2k+1) ≤ H(gTx2k+1,Tgx2k+1) (18)
≤ Rd(gx2k+1,Tx2k+1).

d(fgx2k+1, Sfx2k) ≤ H(fSx2k , Sfx2k) ≤ Rd(fx2k , Sx2k).
(19)

Letting k → ∞ in (18) and (19) and using (17) and the
continuity of f , g,T , and S, we get

gz ∈ Tz and fz ∈ Sz.

By condition (ii) of Theorem 1, we have ggz = gz, fgz = gz.
Let v = gz and then we have gv = v = fv. From (2), we
have

H(Sv,Tz) ≤ φ(max{d(fv, gz),
min{d(fv,Tz), d(gz, Sv)}})

× max{d(fv, gz),
min{d(fv,Tz), d(gz, Sv)}}

+ ϕ(min{d(fv, gz), d(fv,Tv), d(gz, Sz),
d(fv,Tz), d(gz, Sv)})

× min{d(fv, gz), d(fv,Tv), d(gz, Sz),
d(fv,Tz), d(gz, Sv)}.

Note that fv = gz and fv ∈ Tz. Hence, we have
H(Sv,Tz) = 0, i.e., Sv = Tz. Again from (2), we have

H(Sv,Tv) ≤ φ(max{d(fv, gv),
min{d(fv,Tv), d(gv, Sv)}})

× max{d(fv, gv),
min{d(fv,Tv), d(gv, Sv)}}

+ ϕ(min{d(fv, gv), d(fv,Tv), d(gv, Sv),
d(fv,Tv), d(gv, Sv)})

× min{d(fv, gv), d(fv,Tv), d(gv, Sv),
d(fv,Tv), d(gv, Sv)}.

Note that fv = gv and gv ∈ Sv. Hence, we have
H(Sv,Tv) = 0, i.e., Sv = Tv. Therefore, we have
v = fv = gv ∈ Sv = Tv.

Remark 2. Theorem 1 improves and extends some known
results of Kamran [12], Nadler [13], Hu [14], Kaneko [15],
and Mizoguchi and Takahashi [16].

Example 1. Let X = [ 0,∞) be endowed with the metric

d(x, y) =
{
x + y if x �= y,
0 if x = y. (20)

Define T , S : X → CB(X) and f , g : X → X by Tx =[ 0, x3 ],
Sx = {0}, fx = 3x

2 , and gx = x
2 for all x ∈ X. Let φ(t) = 2t

3
and ϕ(t) = t for all t ≥ 0. It is easy to show that S is the
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extended hybrid generalized multi-valued f contraction. It
is easy to check that all the conditions of Theorem 1 hold,
and 0 is a common fixed point of f , g,T, and S.
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