ORIGINAL RESEARCH

Open Access

Hybrid generalized contractions

Muhammad Usman Ali^{1*} and Tayyab Kamran²

Abstract

Sintunavarat and Kumam introduced the notion of hybrid generalized multi-valued contraction mapping and established a common fixed point theorem. We extend their result for four mappings and prove common coincidence and common fixed point theorem.

Keywords: Common fixed points, Coincidence points, R-weakly commuting

MSC 2000: 47H10,54H25

Introduction and preliminaries

Alber and Guerre-Delabriere [1] introduced the concept of weak contraction in Hilbert spaces. Rhoades [2] has shown that the result concluded by Alber and Guerre-Delabriere in [1] is also valid in complete metric spaces. Berinde and Berinde [3] extended weak contraction for multi-valued mappings and introduced the notion of multi-valued (θ, L) -weak contraction and multi-valued (α, L) -weak contraction. Kamran [4] extended these contractions for hybrid pair of mappings and introduced multi-valued (f, θ, L) -weak contraction and multi-valued (f, α, L) -weak contraction. Sintunavarat and Kumam [5] introduced the notion of generalized (f, α, β) -weak contraction to extend the notion of multi-valued (f, α, L) weak contraction. They further extended the notion of generalized (f, α, β) -weak contraction by introducing hybrid generalized multi-valued contraction mappings and established a common fixed point theorem [6]. The purpose of this paper is to extend the notion of hybrid generalized multi-valued contraction and to prove common coincidence and common fixed point theorems.

Let (X, d) be a metric space. For $x \in X$ and $A \subseteq X$, $d(x, A) = \inf\{d(x, y) : y \in A\}$. We denote by CB(X) the class of all nonempty closed and bounded subsets of X. For every $A, B \in CB(X)$

$$H(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\}.$$

*Correspondence: muh_usman_ali@yahoo.com

¹ Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan Full list of author information is available at the end of the article Such a map *H* is called Hausdorff metric induced by *d*. A point $x \in X$ is said to be a common fixed point of f: $X \to X$ and $T : X \to CB(X)$ if $x = fx \in Tx$. The point $x \in X$ is said to be a coincidence point of $f : X \to X$ and $T : X \to CB(X)$ if $fx \in Tx$. Some works for hybrid pair are available in [7-10].

The mappings $f : X \to X$ and $T : X \to CB(X)$ are called *R*-weakly commuting [11,12] if for all $x \in X$, $fTx \in CB(X)$, and there exists a positive real number *R* such that $H(fTx, Tfx) \le Rd(fx, Tx)$.

Lemma 1. [4] Let (X, d) be a metric space, $\{A_k\}$ be a sequence in CB(X), and $\{x_k\}$ be a sequence in X such that $x_k \in A_{k-1}$. Let $\phi : [0, \infty) \rightarrow [0, 1)$ be a function satisfying $\limsup_{r \rightarrow t^+} \phi(r) < 1$ for every $t \in [0, \infty)$. Suppose $d(x_{k-1}, x_k)$ to be a nonincreasing sequence such that

$$H(A_{k-1}, A_k) \le \phi(d(x_{k-1}, x_k))d(x_{k-1}, x_k),$$

$$d(x_{k+1}, x_k) \le H(A_{k-1}, A_k) + \phi^{n_k}(d(x_{k-1}, x_k)),$$

where $n_1 < n_2 < \ldots$, $k, n_k \in \mathbb{N}$. Then, $\{x_k\}$ is a Cauchy sequence in X.

Lemma 2. [13] If $A, B \in CB(X)$ and $a \in A$, then for each $\epsilon > 0$, there exists $b \in B$ such that

$$d(a,b) \leq H(A,B) + \epsilon.$$

Definition 1. [6] Let (X, d) be a metric space, $f : X \to X$ be a single-valued mapping, and $T : X \to CB(X)$ be a multi-valued mapping. *T* is said to be a hybrid generalized multi-valued contraction mapping if and only if there exist two functions $\phi : [0, \infty) \to [0, 1)$ satisfying

© 2013 Ali and Kamran; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $\limsup_{r \to t^+} \phi(r) < 1 \text{ for every } t \in [0,\infty) \text{ and } \varphi : [0,\infty) \to [0,\infty) \text{ such that}$

$$H(Tx, Ty) \le \phi(M(x, y))M(x, y) + \varphi(N(x, y))N(x, y),$$
(1)

for each $x, y \in X$,

where

 $M(x, y) = \max\{d(fx, fy), d(fy, Tx)\},\$

and

 $N(x, y) = \min\{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Ty)\}$

Main results

Definition 2. Let (X, d) be a metric space, $f, g : X \rightarrow X$ and $T : X \rightarrow CB(X)$. A mapping $S : X \rightarrow CB(X)$ is said to be an extended hybrid generalized multi-valued f contraction if and only if there exist two functions $\phi : [0, \infty) \rightarrow [0, 1)$ satisfying $\limsup_{r \rightarrow t^+} \phi(r) < 1$ for every $t \in [0, \infty)$ and $\varphi : [0, \infty) \rightarrow [0, \infty)$ such that

$$H(Sx, Ty) \le \phi(M(x, y))M(x, y) + \varphi(N(x, y))N(x, y),$$
(2)

for each $x, y \in X$,

where

$$M(x, y) = \max\{d(fx, gy), \min\{d(fx, Ty), d(gy, Sx)\}\},\$$

and

$$N(x, y) = \min\{d(fx, gy), d(fx, Tx), d(gy, Sy), d(fx, Ty), d(gy, Sx)\}.$$

Remark 1. If f = g and T = S, then Definition 2 reduces to Definition 1.

Lemma 3. Let (X,d) be a metric space, $f, g: X \to X$ and $T: X \to CB(X)$. Let $S: X \to CB(X)$ be the extended hybrid generalized multi-valued f contraction. Let $\{gx_{2k+1}\}$ be a g-orbit of S at x_0 and $\{fx_{2k+2}\}$ be an f-orbit of T at x_1 such that

$$d(y_{k+1}, y_{k+2}) \le H(A_k, A_{k+1}) + \phi^{n_{k+1}}(M(x_k, x_{k+1})),$$
(3)

for each $k \in \{0, 2, 4, 6, ...\}$, and

$$d(y_{k+2}, y_{k+1}) \le H(A_{k+1}, A_k) + \phi^{n_{k+1}}(M(x_{k+1}, x_k)),$$
(4)

for each $k \in \{1, 3, 5, ...\}$, where $y_{2k+1} = gx_{2k+1} \in Sx_{2k} = A_{2k}$, $y_{2k+2} = fx_{2k+2} \in Tx_{2k+1} = A_{2k+1}$, for each $k \ge 0$. Further, $n_1 < n_2 < ...$ and $\{d(y_k, y_{k+1})\}$ is a nonincreasing sequence. Then, $\{y_k\}$ is a Cauchy sequence in X. *Proof.* Let $y_0 = x_0$. Then, we construct a sequence $\{y_k\}$ in *X*, A_k in CB(*X*) such that $y_{2k+1} = gx_{2k+1} \in Sx_{2k} = A_{2k}$ and $y_{2k+2} = fx_{2k+1} \in Tx_{2k+1} = A_{2k+1}$.

For $k \in \{0, 2, 4, 6, ...\}$, it follows from the extended hybrid generalized multi-valued *f* contraction that

$$\begin{aligned} H(A_k, A_{k+1}) \\ &= H(Sx_k, Tx_{k+1}); \\ &\leq \phi(M(x_k, x_{k+1}))M(x_k, x_{k+1}) \\ &+ \varphi(N(x_k, x_{k+1}))N(x_k, x_{k+1}); \\ &= \phi(\max\{d(fx_k, gx_{k+1}), \min\{d(fx_k, Tx_{k+1}), \\ d(gx_{k+1}, Sx_k)\}\}) \\ &\times \max\{d(fx_k, gx_{k+1}), \min\{d(fx_k, Tx_{k+1}), \\ d(gx_{k+1}, Sx_k)\}\} \\ &+ \varphi(\min\{d(fx_k, gx_{k+1}), d(fx_k, Tx_k), d(gx_{k+1}, Sx_{k+1}), \\ d(fx_k, Tx_{k+1}), d(gx_{k+1}, Sx_k)\}) \min\{d(fx_k, gx_{k+1}), \\ d(fx_k, Tx_k), d(gx_{k+1}, Sx_{k+1}), d(fx_k, Tx_{k+1}), \\ d(gx_{k+1}, Sx_k)\}; \\ &= \phi(d(fx_k, gx_{k+1}))d(fx_k, gx_{k+1}); \\ &= \phi(d(y_k, y_{k+1}))d(y_k, y_{k+1}). \end{aligned}$$

Similarly, we show that for $k = \{1, 3, 5, ...\}$, we have

 $H(A_{k+1}, A_k) \le \phi(d(y_{k+1}, y_k))d(y_{k+1}, y_k).$

By (3), for $k \in \{0, 2, 4, 6, ...\}$, we have

$$\begin{aligned} d(y_{k+1}, y_{k+2}) &= d(gx_{k+1}, fx_{k+2}); \\ &\leq H(Sx_k, Tx_{k+1}) + \phi^{n_{k+1}}(M(x_k, x_{k+1})); \\ &= H(A_k, A_{k+1}) + \phi^{n_{k+1}}(\max\{d(fx_k, gx_{k+1}), \\ \min\{d(fx_k, Tx_{k+1}), d(gx_{k+1}, Sx_k)\}\}); \\ &= H(A_k, A_{k+1}) + \phi^{n_{k+1}}(d(fx_k, gx_{k+1})); \\ &= H(A_k, A_{k+1}) + \phi^{n_{k+1}}(d(y_k, y_{k+1})). \end{aligned}$$

Similarly, for $k = \{1, 3, 5, ...\}$, we have

$$d(y_{k+2}, y_{k+1}) \le H(A_{k+1}, A_k) + \phi^{n_{k+1}}(d(y_{k+1}, y_k)).$$

Given that $\{d(y_k, y_{k+1})\}$ is a nonincreasing sequence, thus, all the conditions of Lemma 1 are satisfied. Hence, $\{y_k\}$ is a Cauchy sequence in *X*.

Theorem 1. Let (X, d) be a complete metric space, $f, g : X \rightarrow X, T : X \rightarrow CB(X)$ are continuous mappings, and $S : X \rightarrow CB(X)$ is a continuous extended hybrid generalized multi-valued f contraction such that $SX \subseteq gX$ and $TX \subseteq fX$. Then,

(*i*) *if* g, T and f, S are R-weakly commuting, then g, T and f, S have a common coincidence point say z.

(ii) Moreover, if ggz = gz, fgz = gz, then f, g, T, and S have a common fixed point.

Proof. Let x_0 be an arbitrary point in X and $y_0 = fx_0$. Then, we construct a sequence $\{y_k\}$ in X, A_k in CB(X) respectively as follows. Since $SX \subseteq gX$, there exists a point $x_1 \in X$ such that $y_1 = gx_1 \in Sx_0 = A_0$. We can choose a positive integer n_1 such that

$$\phi^{n_1}(d(y_0, y_1)) \le [1 - \phi(M(x_0, x_1))] M(x_0, x_1).$$
(5)

Since $TX \subseteq fX$, there exists $y_2 = fx_2 \in Tx_1 = A_1$ such that

$$d(y_1, y_2) \le H(Sx_0, Tx_1) + \phi^{n_1}(d(y_0, y_1)).$$
(6)

Using (5) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$d(y_1, y_2) \leq H(Sx_0, Tx_1) + \phi^{n_1}(d(y_0, y_1));$$

$$\leq \phi(M(x_0, x_1))M(x_0, x_1) + \phi(N(x_0, x_1))N(x_0, x_1) + [1 - \phi(M(x_0, x_1))]M(x_0, x_1);$$

$$= M(x_0, x_1);$$

$$= \min\{d(fx_k, Tx_{k+1}), d(gx_{k+1}, Sx_k)\}\};$$

$$= d(fx_0, gx_1);$$

$$= d(y_0, y_1).$$

Now, we can choose a positive integer $n_2 > n_1$ such that

$$\phi^{n_2}(d(y_2, y_1)) \le [1 - \phi(M(x_2, x_1))]M(x_2, x_1).$$
 (7)

There exists $y_3 = gx_3 \in Sx_2 = A_2$ such that

$$d(y_3, y_2) \le H(Sx_2, Tx_1) + \phi^{n_2}(d(y_2, y_1)).$$
(8)

Using (7) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$d(y_3, y_2) \leq H(Sx_2, Tx_1) + \phi^{n_2}(d(y_2, y_1));$$

$$\leq \phi(M(x_2, x_1))M(x_2, x_1) + \phi(N(x_2, x_1))N(x_2, x_1) + [1 - \phi(M(x_2, x_1))]M(x_2, x_1);$$

$$= M(x_2, x_1);$$

$$= \max\{d(fx_2, gx_1), \min\{d(fx_2, Tx_1), d(gx_1, Sx_2)\}\};$$

$$= d(fx_2, gx_1);$$

$$= d(fx_2, gx_1).$$

Now, we can choose a positive integer $n_3 > n_2$ such that

$$\phi^{n_3}(d(y_2, y_3)) \le [1 - \phi(M(x_2, x_3))] M(x_2, x_3).$$
(9)

There exists $y_4 = fx_4 \in Tx_3 = A_3$ such that

$$d(y_3, y_4) \le H(Sx_2, Tx_3) + \phi^{n_3}(d(y_2, y_3)).$$
(10)

Using (9) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$\begin{aligned} d(y_3, y_4) &\leq H(Sx_2, Tx_3) + \phi^{n_3}(d(y_2, y_3)); \\ &\leq \phi(M(x_2, x_3))M(x_2, x_3) \\ &+ \phi(N(x_2, x_3))N(x_2, x_3) \\ &+ [1 - \phi(M(x_2, x_3))]M(x_2, x_3); \\ &= M(x_2, x_3); \\ &= \max\{d(fx_2, gx_3), \min\{d(fx_2, Tx_3), \\ d(gx_3, Sx_2)\}\}; \\ &= d(fx_2, gx_3); \\ &= d(fx_2, gx_3). \end{aligned}$$

Now, we can choose a positive integer $n_4 > n_3$ such that

$$\phi^{n_4}(d(y_4, y_3)) \le \left[1 - \phi(M(x_4, x_3))\right] M(x_4, x_3).$$
(11)

There exists $y_5 = gx_5 \in Sx_4 = A_4$ such that

$$d(y_5, y_4) \le H(Sx_4, Tx_3) + \phi^{n_4}(d(y_4, y_3)).$$
(12)

Using (11) and the notion of extended hybrid generalized multi-valued f contraction in the above inequality, we have

$$d(y_5, y_4) \leq H(Sx_4, Tx_3) + \phi^{n_4}(d(y_4, y_3));$$

$$\leq \phi(M(x_4, x_3))M(x_4, x_3) + \phi(N(x_4, x_3))N(x_4, x_3) + [1 - \phi(M(x_4, x_3))]M(x_4, x_3);$$

$$= M(x_4, x_3);$$

$$= \max\{d(fx_4, gx_3), \min\{d(fx_4, Tx_3), d(gx_3, Sx_4)\}\};$$

$$= d(fx_4, gx_3);$$

$$= d(fx_4, gx_3).$$

By repeating this process for all $k \in \mathbb{W}$, we have the following:

Case (i). For $k \in \{0, 2, 4, 6, ...\}$, we can choose a positive integer n_{k+1} such that

$$\phi^{n_{k+1}}(d(y_k, y_{k+1})) \le [1 - \phi(M(x_k, x_{k+1}))]M(x_k, x_{k+1}).$$
(13)

There exists $y_{k+2} = fx_{k+2} \in Tx_{k+1} = A_{k+1}$ such that

$$d(y_{k+1}, y_{k+2}) \le H(Sx_k, Tx_{k+1}) + \phi^{n_{k+1}}(d(y_k, y_{k+1})).$$
(14)

Using (13) and the notion of extended generalized multivalued f contraction in the above inequality, we have

$$\begin{aligned} d(y_{k+1}, y_{k+2}) &\leq H(Sx_k, Tx_{k+1}) + \phi^{n_{k+1}}(d(y_k, y_{k+1})); \\ &\leq \phi(M(x_k, x_{k+1}))M(x_k, x_{k+1}) \\ &+ \varphi(N(x_k, x_{k+1}))N(x_k, x_{k+1}) \\ &+ [1 - \phi(M(x_k, x_{k+1}))]M(x_k, x_{k+1}); \\ &= M(x_k, x_{k+1}); \\ &= \max\{d(fx_k, gx_{k+1}), \min\{d(fx_k, Tx_{k+1}) \\ &\quad d(gx_{k+1}, Sx_k)\}\}; \\ &= d(fx_k, gx_{k+1}); \\ &= d(y_k, y_{k+1}). \end{aligned}$$

Case (ii). For $k \in \{1, 3, 5, 7, ...\}$, we can choose a positive integer n_k such that

$$\phi^{n_{k+1}}(d(y_{k+1}, y_k)) \le [1 - \phi(M(x_{k+1}, x_k))] M(x_{k+1}, x_k).$$
(15)

There exists $y_{k+2} = gx_{k+2} \in Sx_{k+1} = A_{k+1}$ such that

$$d(y_{k+2}, y_{k+1}) \le H(Sx_{k+1}, Tx_k) + \phi^{n_{k+1}}(d(y_{k+1}, y_k)).$$
(16)

Using (15) and the notion of extended generalized multivalued f contraction in the above inequality, we have

$$\begin{aligned} d(y_{k+2}, y_{k+1}) &\leq H(Sx_{k+1}, Tx_k) + \phi^{n_{k+1}}(d(y_{k+1}, y_k)); \\ &\leq \phi(M(x_{k+1}, x_k))M(x_{k+1}, x_k) \\ &+ \phi(N(x_{k+1}, x_k))N(x_{k+1}, x_k) \\ &+ [1 - \phi(M(x_{k+1}, x_k))]M(x_{k+1}, x_k); \\ &= M(x_{k+1}, x_k); \\ &= \max\{d(fx_{k+1}, gx_k), \min\{d(fx_{k+1}, Tx_k), \\ &d(gx_k, Sx_{k+1})\}\}; \\ &= d(fx_{k+1}, gx_k); \\ &= d(y_{k+1}, y_k). \end{aligned}$$

Hence, $\{d(y_k, y_{k+1})\}$ is a nonincreasing sequence for each $k \ge 0$. Thus, by Lemma 3, $\{y_k\}$ is a Cauchy sequence in X. Then, (2) ensures that $\{A_k\}$ is a Cauchy sequence in CB(X). As we know that if X is complete, then CB(X) is also complete. Therefore, there exist $z \in X$ and $A \in CB(X)$ such that $y_k \rightarrow z$ and $A_k \rightarrow A$. Moreover, $gx_{2k+1} \rightarrow z$ and $f_{2k+2} \rightarrow z$, since

$$d(z,A) = \lim_{k \to \infty} d(y_k, A_k) \le \lim_{k \to \infty} H(A_{k-1}, A_k) = 0.$$
(17)

It follows that $z \in A$, since A is closed. Thus, we have

$$\lim_{k \to \infty} gx_{2k+1} = z \in A = \lim_{k \to \infty} Sx_{2k} \text{ and}$$
$$\lim_{k \to \infty} fx_{2k+2} = z \in A = \lim_{k \to \infty} Tx_{2k+1}$$

As g, T and f, S are R-weakly commuting, we have

$$d(gfx_{2k+2}, Tgx_{2k+1}) \le H(gTx_{2k+1}, Tgx_{2k+1})$$

$$\le Rd(gx_{2k+1}, Tx_{2k+1}).$$
(18)

$$d(fgx_{2k+1}, Sfx_{2k}) \le H(fSx_{2k}, Sfx_{2k}) \le Rd(fx_{2k}, Sx_{2k}).$$
(19)

Letting $k \to \infty$ in (18) and (19) and using (17) and the continuity of *f*, *g*, *T*, and *S*, we get

$$gz \in Tz$$
 and $fz \in Sz$.

By condition (ii) of Theorem 1, we have ggz = gz, fgz = gz. Let v = gz and then we have gv = v = fv. From (2), we have

$$H(Sv, Tz) \leq \phi(\max\{d(fv, gz), \\ \min\{d(fv, Tz), d(gz, Sv)\}\}) \\ \times \max\{d(fv, gz), \\ \min\{d(fv, Tz), d(gz, Sv)\}\} \\ + \varphi(\min\{d(fv, gz), d(fv, Tv), d(gz, Sz), \\ d(fv, Tz), d(gz, Sv)\}) \\ \times \min\{d(fv, gz), d(fv, Tv), d(gz, Sz), \\ d(fv, Tz), d(gz, Sv)\}.$$

Note that fv = gz and $fv \in Tz$. Hence, we have H(Sv, Tz) = 0, i.e., Sv = Tz. Again from (2), we have

$$H(Sv, Tv) \leq \phi(\max\{d(fv, gv), \\ \min\{d(fv, Tv), d(gv, Sv)\}\}) \\ \times \max\{d(fv, gv), \\ \min\{d(fv, Tv), d(gv, Sv)\}\} \\ + \phi(\min\{d(fv, gv), d(fv, Tv), d(gv, Sv), \\ d(fv, Tv), d(gv, Sv)\}) \\ \times \min\{d(fv, gv), d(fv, Tv), d(gv, Sv), \\ d(fv, Tv), d(gv, Sv)\}.$$

Note that fv = gv and $gv \in Sv$. Hence, we have H(Sv, Tv) = 0, i.e., Sv = Tv. Therefore, we have $v = fv = gv \in Sv = Tv$.

Remark 2. Theorem 1 improves and extends some known results of Kamran [12], Nadler [13], Hu [14], Kaneko [15], and Mizoguchi and Takahashi [16].

Example 1. Let $X = [0, \infty)$ be endowed with the metric

$$d(x,y) = \begin{cases} x+y & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$
(20)

Define $T, S : X \to CB(X)$ and $f, g : X \to X$ by $Tx = [0, \frac{x}{3}]$, $Sx = \{0\}, fx = \frac{3x}{2}, and gx = \frac{x}{2}$ for all $x \in X$. Let $\phi(t) = \frac{2t}{3}$ and $\varphi(t) = t$ for all $t \ge 0$. It is easy to show that S is the

extended hybrid generalized multi-valued f contraction. It is easy to check that all the conditions of Theorem 1 hold, and 0 is a common fixed point of f, g, T, and S.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MUA and TK contributed equally in this article. Both authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to the referees for their valuable comments and to Islamic Azad University for the coverage of article processing charges in Mathematical Sciences.

Author details

¹Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan. ²Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan.

Received: 4 April 2013 Accepted: 10 May 2013 Published: 26 May 2013

References

- 1. Alber, YI, Guerre-Delabriere, S: Principles of weakly contractive maps in Hilbert spaces. Oper. Theory Adv. Appl. **98**, 7–22 (1997)
- Rhoades, SG: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)
- Berinde, M, Berinde, V: On general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326, 772–782 (2007)
- Kamran, T: Multi-valued f-weakly Picard mappings. Nonlinear Anal. 67, 2289–2296 (2007)
- 5. Sintunavarat, W, Kumam, P: Weak condition for generalized multi-valued (f, α, β) -weak contraction mappings. Appl. Math. Lett. **24**, 411–421 (2011)
- Sintunavarat, W, Kumam, P: Common fixed point theorem for hybrid generalized multi-valued contraction mappings. Appl. Math. Lett. 25, 52–57 (2012)
- Samet, B, Vetro, C: Comments on the paper "Coincidence theorems for some multivalued mappings" by B. E. Rhoades, S.L. Singh and C. Kulshrestha. Fasc. Math. 47, 89–94 (2011)
- Sintunavarat, W, Kumam, P, Patthanangkoor, P: Common random fixed points for multivalued random operators without S- and T-weakly commuting random operators. Rand. Oper. Stoc. Eqs. 17, 381–388 (2009)
- Sintunavarat, W, Kumam, P: Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition. Appl. Math. Lett. 22, 1877–1881 (2009)
- Kamran, T: Coincidence and fixed point for hybrid strict contractions. J. Math. Anal. Appl. 235–241 (2004)
- Shahzad, N, Kamran, T: Coincidence points and R-weakly commuting maps. Arch. Math. 37, 179–183 (2001)
- Kamran, T: Common coincidence points of R-weakly commuting maps. Int. J. Math. Math. Sci. 26, 179–182 (2001)
- Nadler, SB: Multi-valued contraction mappings. Pacific J. Math. 30, 475–488 (1969)
- Hu, T: Fixed point theorems for multivalued mappings. Canad. Math. Bull. 23, 193–197 (1980)
- Kaneko, H: Single-valued and multi-valued f-contractions. Boll. Un. Mat. Ital. A(6). 4, 29–33 (1985)
- Mizoguchi, N, Takahashi, W: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)

doi:10.1186/2251-7456-7-29

Cite this article as: Ali and Kamran: Hybrid generalized contractions. *Mathematical Sciences* 2013 **7**:29.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com