Introduction

For a continuous function f on [0,) with exponential growth, the Szász operators are given by

S n ( f ; x ) = k = 0 f ( k n ) P k , n ( x ) ,

where P k , n (x)= e - nx ( nx ) k k ! . In [1], Ditzian proved some important inverse theorems for these operators by using the modulus of continuity defined by

ω 2 ( f ; δ , A ) = sup h δ , x 0 , f ( x ) - 2 f ( x + h ) + f ( x + 2 h ) e - Ax = sup h δ , x 0 , Δ h 2 f ( x ) e - Ax ,

where supx∈[0,)| f(x)e-Ax| < M.

In 1992, Guo and Zhou [2] gave similar theorems for the following modified Szász operators defined by Mazhar and Totik in [3]:

L n (f;x)= k = 0 n 0 f ( t ) P k , n ( t ) dt P k , n (x).
(1)

The authors obtained the following results for these operators:

  1. (1)

    Let f ∈ C[0,) be a bounded function. Then, for 0 < α < 1,

    L n ( f ; x ) - f ( x ) M ( x n + 1 n 2 ) α / 2

holds if and only if

ω 1 ( f ; δ ) = O ( δ α ) , ( δ > 0 ) ,

where

ω 1 (f;δ)= sup 0 h δ sup x h / 2 f ( x + h / 2 ) - f ( x - h / 2 ) .
(2)
  1. (2)

    For f ∈ C[0,)∩L [0,) and 0 < α < 1,

    ω 1 ( f ; δ ) = O ( δ α ) L n ( f ; x ) M min n 2 , n / x ( 1 - α ) / 2 ω 2 ( f ; δ ) = O ( δ α ) L n ′′ ( f ; x ) M min n 2 , n / x ( 2 - α ) / 2

holds, where ω1(f;δ) is defined by (2) and

ω 2 (f;δ)= sup 0 < h δ , x 0 , f ( x ) - 2 f ( x + h ) + f ( x + 2 h ) .
(3)
  1. (3)

    For fC B [0,),

    L n f - f C ω φ 2 ( f ; 1 n ) + ω 1 ( f ; 1 n ) + 1 n f

holds, where C is a constant independent of n, and ω φ 2 ( f ; . ) is the Ditzian-Totik modulus of smoothness [4] defined by

ω φ 2 ( f ; δ ) = sup 0 < h δ , x 0 , f ( x - h φ ( x ) ) - 2 f ( x ) + f ( x + h φ ( x ) ) , x h , φ ( x ) = x .

In [5], Baskakov introduced the following sequence of linear operators n which are generalizations of Bernstein polynomials, Szász operators, and Lupas operators:

n ( f ; x ) = k = 0 ( - x ) k k ! φ n ( k ) ( x ) f ( k n ) .
(4)

Here, x 0 , b (b>0, b can be ), n, and φ n n is a sequence of functions defined on [0,b] that have the following properties for all k,n:

  1. (a)

    φ n is analytic on the interval [0,b] including the end points,

  2. (b)

    φ n (0) = 1,

  3. (c)

    φ n is completely monotone, i.e. ( - 1 ) k φ n ( k ) (x)0,

  4. (d)

    there exists a positive integer m 0 = m 0(n), such that

    - φ n ( k ) ( x ) = n φ n + m 0 ( k - 1 ) ( x ) ( k = 1 , 2 , ) ,
  5. (e)
    lim n n m 0 + n =1

    .

For the operators n (f;x) given by (4), we have (see [5]):

n (1;x)=1,
(5)
n (t;x)=x,
(6)
n ( t 2 ;x)= n ( m 0 + n ) n 2 x 2 + x n ,
(7)

and

n ( ( t - x ) 2 ; x ) = m 0 n x 2 + 1 n x .

In the present paper, inspired by the operators (1) and (4), we introduce a generalization of the Baskakov operators as follows:

n (f;x)= k = 0 1 γ n 0 f t - t k k ! φ n k t dt - x k k ! φ n k x ,
(8)

where γ n = 0 φ n t dt< for all n and φ n also satisfies the following condition:

lim x x k φ n k - 1 x = 0 , k , n

and

lim n γ n - υ m 0 γ n = 1 , υ = 1 , 2 , 3 .

In this study, we shall give some direct and inverse results for the new operators defined by (8).

Note that if φ n (x) = e-nxin (8), we get the operators L n (f;x) defined by (1). Also, very important results were obtained by Mazhar and Totik in [3]. Recently, integral-type modification of some operators based on q-integers have been studied by Gupta et al. [6], Gupta and Kim [7], and Kim [8].

Main results

Now, we give the following lemma which will be used for the proof of theorems:

Lemma 1. The following equalities hold:

n 1 , x = 1 , n t , x = γ n - m 0 γ n nx n - m 0 + 1 n - m 0 , n t 2 , x = γ n - 2 m 0 γ n n m 0 + n n - 2 m 0 n - m 0 x 2 + 4 nx n - 2 m 0 n - m 0 + 2 n - 2 m 0 n - m 0 .

From the definition of operators n and Lemma 1, we have

n t - x 2 , x = γ n - 2 m 0 γ n n m 0 + n n - 2 m 0 n - m 0 - 2 n n - m 0 γ n - m 0 γ n + 1 x 2 + 4 n n - 2 m 0 n - m 0 γ n - 2 m 0 γ n - 2 n - m 0 γ n - m 0 γ n x + 2 n - 2 m 0 n - m 0 γ n - 2 m 0 γ n .
(9)

Theorem 2. Let f ∈ C[0,)be a bounded function, and 0 < α ≤ 1.If the usual modulus of smoothness ω1(f,t)defined by (2) satisfies

ω 1 f , t =O t α t > 0 ,
(10)

then

n f , x - f x K γ n - 2 m 0 γ n n m 0 + n n - 2 m 0 n - m 0 - 2 n n - m 0 γ n - m 0 γ n + 1 x 2 + 4 n n - 2 m 0 n - m 0 γ n - 2 m 0 γ n - 2 n - m 0 γ n - m 0 γ n x + 2 n - 2 m 0 n - m 0 γ n - 2 m 0 γ n α / 2

holds.

Proof. Using the definition of the operators n and the equality (9), we obtain the following inequality:

n f , x - f ( x ) k = 0 1 0 φ n ( t ) dt 0 f ( t ) - f ( x ) - t k k ! φ n ( k ) ( t ) dt - x k k ! φ n ( k ) x k = 0 1 0 φ n t dt 0 ω 1 t - x - t k k ! φ n ( k ) ( t ) dt - x k k ! φ n ( k ) ( x ) ω 1 f , δ n 1 + 1 δ n k = 0 1 0 φ n ( t ) dt 0 t - x p n , k ( t ) dt p n , k ( x ) ω 1 f , δ n 1 + 1 δ n n t - x 2 , x 1 / 2 = ω 1 f , δ n 1 + 1 δ n γ n - 2 m 0 γ n n m 0 + n n - 2 m 0 n - m 0 - 2 n n - m 0 γ n - m 0 γ n + 1 x 2 + 4 n n - 2 m 0 n - m 0 γ n - 2 m 0 γ n - 2 n - m 0 γ n - m 0 γ n x + 2 n - m 0 γ n - 2 m 0 γ n 1 / 2 .

If we choose δ n as

δ n = γ n - 2 m 0 γ n n m 0 + n n - 2 m 0 n - m 0 - 2 n n - m 0 γ n - m 0 γ n + 1 x 2 + 4 n n - 2 m 0 n - m 0 γ n - 2 m 0 γ n - 2 n - m 0 γ n - m 0 γ n x + 2 n - 2 m 0 n - m 0 γ n - 2 m 0 γ n 1 / 2 ,

then we get

n f , x - f ( x ) 2 ω 1 f , γ n - 2 m 0 γ n n m 0 + n n - 2 m 0 n - m 0 - 2 n n - m 0 γ n - m 0 γ n + 1 x 2 + 4 n n - 2 m 0 n - m 0 γ n - 2 m 0 γ n - 2 n - m 0 γ n - m 0 γ n x + 2 n - 2 m 0 n - m 0 γ n - 2 m 0 γ n 1 / 2 .

Consequently, using (10) in the above inequality, we finally get

n f , x - f ( x ) 2 K γ n - 2 m 0 γ n n m 0 + n n - 2 m 0 n - m 0 - 2 n n - m 0 γ n - m 0 γ n + 1 x 2 + 4 n n - 2 m 0 n - m 0 γ n - 2 m 0 γ n - 2 n - m 0 γ n - m 0 γ n x + 2 n - 2 m 0 n - m 0 γ n - 2 m 0 γ n α / 2 .

Theorem 3. Let f ∈ C[0,)be a bounded function, and 0 < α < 1.If

n f , x - f ( x ) K 1 n 2 + 1 n 2 ( 1 + m 0 x ) α / 2

for some positive constant K,then

ω 1 f , t = O t α , t > 0 ,

where ω1(f,t) is the usual modulus of smoothness of f defined by (2).

Proof. For δ > 0, let

f δ ( x ) = 1 δ 0 f x + s ds.

For the function f ∈ C[0,) ∩ L [0,), the following inequalities hold (see [9]).

f δ - f ω 1 f , δ ,
(11)
f δ 1 δ ω 1 f , δ .
(12)

Now, we find the derivative of n f , x with respect to x. From the definition of the operators n , we can write

d dx n f , x = n x k = 0 1 0 φ n ( t ) dt 0 f ( t ) - t k k ! φ n ( k ) t dt - x k k ! φ n ( k ) x k n - x + x 1 - φ n + m 0 ( k ) ( x ) φ n ( k ) ( x ) = n k = 0 1 0 φ n ( t ) dt 0 f ( t ) p n , k + 1 ( t ) - p n , k ( t ) dt - x k k ! φ n + m 0 ( k ) x .

Now, using the properties of the operators (4), we obtain

d dx n f δ - f , x = n x k = 0 1 0 φ n ( t ) dt 0 f δ ( t ) - f ( t ) - t k k ! φ n ( k ) t dt × - x k k ! φ n ( k ) ( x ) k n - x + x 1 - φ n + m 0 ( k ) ( x ) φ n ( k ) ( x ) n x f δ - f n t - x , x + x k = 0 - x k k ! φ n ( k ) ( x ) 1 - φ n + m 0 ( k ) ( x ) φ n ( k ) ( x ) = n x f δ - f m 0 n x 2 + x n 1 / 2 n x ω 1 f ; δ m 0 n x 2 + x n 1 / 2 ,
(13)

where we have used the inequality,

n t - x , x n t - x 2 , x 1 / 2 = m 0 n x 2 + x n 1 / 2 .

On the other hand, we also have

d dx n f δ - f , x = n k = 0 1 0 φ n ( t ) dt 0 f δ ( t ) - f ( t ) × p n , k + 1 ( t ) - p n , k ( t ) dt - x k k ! φ n + m 0 ( k ) ( x ) 2 n f δ - f φ n + m 0 ( 0 ) 2 n ω 1 f ; δ .

Using the two estimates of d dx n f δ - f , x obtained above, we get

d dx n f δ - f , x 2 ω 1 f ; δ min n m 0 + n x 1 / 2 , n .

Also, one can easily obtain that

d dx n f δ , x = n m 0 - n k = 0 1 0 φ n ( t ) dt 0 f δ ( t ) p n - m 0 , k + 1 ( t ) dt × - x k k ! φ n + m 0 ( k ) ( x ) 1 δ γ n - m 0 γ n n n - m 0 ω 1 f ; δ .

For any t > 0 and 0 < h ≤ t, t∈(0,), we can write

f x + h - f ( x ) f x + h - n f , x + h + f ( x ) - n f , x + 0 h d dx n f δ , x + u du + 0 h d dx n f - f δ , x + u du 2 K δ n , m 0 , x , h α + 0 h 1 δ 2 n n - m 0 γ n - m 0 γ n ω 1 f ; δ du + 0 h 2 ω 1 f ; δ min n m 0 + n x + u 1 / 2 , n du = 2 K δ n , m 0 , x , h α + h δ 2 n n - m 0 γ n - m 0 γ n ω 1 f ; δ + 2 ω 1 f ; δ 0 h min n m 0 + n x + u 1 / 2 , n du 2 K δ n , m 0 , x , h α + h δ 2 n n - m 0 γ n - m 0 γ n ω 1 f ; δ + 6 ω 1 f ; δ h 1 n 2 + 1 n 2 ( 1 + m 0 ( x + h ) ) 2 K δ n , m 0 , x , h α + 6 h ω 1 f ; δ n n - m 0 1 δ + 1 δ n , m 0 , x , h ,

where

δ n , m 0 , x , h = 1 n 2 + 1 n 2 ( 1 + m 0 ( x + h ) ) 1 / 2 .

Note that for any n, we have

1 2 δ n , m 0 , x , h δ n + 1 , m 0 , x , h δ n , m 0 , x , h .

Hence, for 0<δ< 1 2 , we can choose n such that

δ n , m 0 , x , h < δ 2 δ n , m 0 , x , h .

For sufficiently large n, we get

f x + h - f ( x ) 2 K δ n , m 0 , x , h α + 6 h ω 1 f ; δ 2 δ + 1 δ n , m 0 , x , h 2 K δ α + 24 h δ ω 1 f ; δ max 2 K , 24 δ α + h δ ω 1 f ; δ .

From last inequality, for 0 < h ≤ t, we get

ω 1 f ; t K δ α + t δ ω 1 f ; δ

which implies ω1(f;t) = O(tα), as desired. □

Theorem 4. For f ∈ C[0,) ∩ L [0,), 0 < α < 2, we have

ω 2 f , t = O t α d 2 d x 2 n f , x M min 2 n x + 4 n 2 + 6 n m 0 , 4 n m 0 + n ( 2 - α ) / 2 , ( n > 2 m 0 ) ,

where ω2(f,.)is the modulus of smoothness of f defined by (3).

Proof. (:⇒) We assume that ω2(f,t) ≤ M tα. For g ∈ C B [0,), we get the second-order derivative of the operator n g , x with respect to x as

d 2 d x 2 n g , x = n m 0 + n k = 0 1 0 φ n ( t ) dt 0 g ( t ) p n , k ( t ) - 2 p n , k + 1 t + p n , k + 2 ( t ) dt - x k k ! φ n + m 0 ( k ) ( x )
= n m 0 + n x - 2 k = 0 1 0 φ n ( t ) dt 0 f ( t ) p n , k ( t ) dt .

Hence,

d 2 d x 2 n g , x 4 n m 0 + n g

and

d 2 d x 2 n g , x 2 n x + 4 n 2 + 6 n m 0 g .

Now for f ∈ C[0,)∩L [0,), let us define the Steklov function as

f d ( x ) = 4 d 2 0 d / 2 2 f x + u + v - f x + 2 u + 2 v dudv.

Then,

f - f d ω 2 f , d

and

f d 9 d 2 ω 2 f , d

For f d , one can verify

d 2 d x 2 n f d , x = k = 0 1 0 φ n ( t ) dt 0 f d ( t ) p n + 2 m 0 , k + 2 t dt 1 n m 0 + n 9 d 2 ω 2 f , d .

Choosing d=min 2 n x + 4 n 2 + 6 n m 0 , 4 n m 0 + n - 1 / 2 , we get

d 2 d x 2 n f , x d 2 d x 2 n f d , x + d 2 d x 2 n f - f d , x 1 n m 0 + n 9 d 2 ω 2 f , d + min 2 n x + 4 n 2 + 6 n m 0 , 4 n m 0 + n ω 2 f , d ,

which proves the necessity part of the theorem. (⇐:) Now, in order to prove the sufficiency part of the theorem, we define the combination of n , 1 as follows

n , 1 f , x = a 0 ( n ) n 0 f , x + a 1 ( n ) n 1 f , x ,

where |a0(n)| + |a1(n)| ≤ B, n = n0 < n1 ≤ A n with A and B as absolute constants having the property

n , 1 t i , x = x i , i = 0 , 1 .

Using the methods in [9, 10] for f ∈ C[0,)∩L [0,), we have

n , 1 f , x - f ( x ) M ω 2 f , δ n ( x ) , δ n ( x ) = 2 m 0 x + 1 n + m 0 x + 1 n - 2 m 0 n - m 0 .

For m,n ∈ N, x ∈ (0, ∞ ),0 < h ≤ t, we have

m f , x - 2 m f , x + h + m f , x + 2 h 4 M ω 2 m f , δ n x + 2 h + 0 h d 2 d x 2 n n , 1 f , x + u + v dudv .
(14)

Now, we shall estimate the second term on the right-hand side of the above inequality. Firstly, we have

d 2 d x 2 n , 1 f , x 4 B ( An ) 2 - α .

On the other hand, we also have

d 2 d x 2 n , 1 f , x B An x + 6 ( An ) 2 ( 2 - α ) / 2 MBA n ( 2 - α ) / 2 1 x ( 2 - α ) / 2 .

From which, we can write

1 x α / 2 - 1 d 2 d x 2 n , 1 f , x MBA n ( 2 - α ) / 2 .

Hence, using the above inequality, we get

1 x α / 2 - 1 d 2 d x 2 m n , 1 f , x = 1 x α / 2 - 1 k = 0 1 0 φ n ( t ) dt 0 d 2 d x 2 n , 1 f , t p n + 2 m 0 , k + 2 ( t ) dt × - x k k ! φ n + m 0 k ( x ) MBA n ( 2 - α ) / 2 .

After making some arrangements and then taking the integral of both sides of the above inequality, we get

0 h d 2 d x 2 n n , 1 f , x + u + v dudv MBA n ( 2 - α ) / 2 0 h 1 x + u + v α - 1 2 dudv MBA n ( 2 - α ) / 2 h 2 n x + 2 h ( 2 - α ) / 2 .
(15)

Now, substituting (15) into (14), we finally obtain

m f , x - 2 m f , x + h + m f , x + 2 h 4 M ω 2 m f , δ n x + 2 h + M 1 h 2 M n x + 2 h ( 2 - α ) ,
(16)

where M n (x)= x n . Choosing n such that

t 2 C max δ n x + 2 h , M n x + 2 h t C ,

we obtain from (16) by induction

ω 2 m f , t 4 M ω 2 m f , t C + 2 C 2 - α M 2 t α . . . t 2 ( 4 M ) k C - 2 k d 2 d x 2 m f + 2 C 2 - α M 2 t α C α C α - 4 M .
(17)

If we take C = (1 + 4M)1/α and let k → , we obtain

ω 2 m f , t 1 C α - 4 M 4 C 2 M 2 t α

which implies that ω2(f,t) = O(tα), where 1 C α - 4 M 4 C 2 M 2 is independent of m. So, the proof is completed. □