1. Introduction

Hardy inequality in nreads, for all f C 0 ( n ) and n ≥ 3,

n | f | 2 d x ( n - 2 ) 2 4 n f 2 | x | 2 d x .
(1.1)

The Sobolev inequality states that, for all f C 0 ( n ) and n ≥ 3,

n | f | 2 d x S n n | f | 2 * d x 2 2 * ,
(1.2)

where 2 * = 2 n n - 2 and S n = π n ( n - 2 ) ( Γ ( n 2 ) Γ ( n ) ) 2 n is the best constant (cf. [1, 2]). A result of Stubbe [3] states that for 0δ< ( n - 2 ) 2 4 ,

n | f | 2 d x - δ n f 2 | x | 2 d x ( n - 2 ) 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | f | 2 * d x 2 2 *
(1.3)

and the constant in (1.3) is sharp. Recently, Balinsky et al. [4] prove analogous inequalities for the operator L:= x . One of the results states that, for 0 ≤ δ < n2/4 and f C 0 ( n ) ,

n | L f | 2 d x - δ n f 2 d x C n 2 4 - δ n - 1 n S n n | r F | 2 * d x 2 2 * ,
(1.4)

where F(r) is the integral mean of f over the unit sphere S n - 1 , i.e.,

F ( r ) = 1 | S n - 1 | S n - 1 f ( r ω ) d ω ,

and | S n - 1 |= S n - 1 dω= 2 π n 2 Γ ( n 2 ) . Here, we use the polar coordinates x = . The aim of this note is to look for the sharp constant of inequality (1.4). To this end, we have:

Theorem 1.1. Let f C 0 ( n ) and n ≥ 3. There holds, for0δ< n 2 4 ,

n | L f | 2 d x - δ n f 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 *
(1.5)

and the constant in (1.5) is sharp.

When δ = n2/4, we have the following Theorem, which generalize the results of [4], Corollary 4.6.

Theorem 1.2. If f is supported in the annulus A R := {xn: R-1 < |x| < R}, then

A R | L f | 2 d x - n 2 4 A R f 2 d x [ 2 ( n - 2 ) ln R ] - 2 ( n - 1 ) n S n A R | r F ( r ) | 2 * d x 2 2 * .

2. The proofs

We first recall the Bliss lemma [5]:

Lemma 2.1. For s ≥ 0, q > p > 1 and r = q/p - 1,

0 0 s g ( t ) d t q s r - q d s p q C p , q 0 | g ( t ) | p d t ,

where

C p , q = ( q - r - 1 ) - p q r Γ ( q r ) Γ ( 1 r ) Γ ( ( q - 1 ) r ) r p q

is the sharp constant. Equality is attained for functions of the form

g ( t ) = c 1 ( c 2 s r + 1 ) - r + 1 r , c 1 > 0 , c 2 > 0 .

Using the Bliss lemma, we can prove the Theorem 1.1 for the radial function f, i.e., f ( x ) = f ̃ ( | x | ) for some f ̃ C 0 ( [ 0 , ) ) .

Lemma 2.2. Letf ( | x | ) C 0 ( n ) and n ≥ 3. There holds, for0δ< n 2 4 ,

n | L f | 2 d x - δ n f 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 *
(2.1)

and the constant in (2.1) is sharp.

Proof. We note if f is radial, then F(r) = f(r) and Lf=r f ( r ) . Therefore, inequality (2.1) is equivalent to

0 | f ( r ) | 2 r n + 1 d r - δ 0 | f ( r ) | 2 r n - 1 d r n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n | S n - 1 | - 2 n 0 | f ( r ) | 2 * r 2 * + n - 1 d x 2 2 * .
(2.2)

Let 0 ≤ β < n/2 and set g(r) = rβf(r). Through integration by parts, we have that

0 | g ( r ) | 2 r n + 1 - 2 β d r = 0 | f ( r ) | 2 r n + 1 d r - β ( n - β ) 0 | f ( r ) | 2 r n - 1 d r .
(2.3)

Make the change of variables s = rn-2β,

0 | g ( r ) | 2 r n + 1 - 2 β d r = ( n - 2 β ) 0 s 2 g s 2 d s .
(2.4)

On the other hand, set h ( s ) = g s so that g=- s + h ( t ) d t, we have

0 s 2 g s 2 d s = 0 s 2 h 2 d s = 0 | w ( s ) | 2 d s ,

where w(s) = s-2h(s-1). By Bliss lemma,

0 | w ( s ) | 2 d s n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 0 s | w ( t ) | d t 2 * s 2 - 2 n n - 2 d s 2 2 * ,

i.e.,

0 s 2 g s 2 d s = 0 s 2 h 2 d s = 0 | w ( s ) | 2 d s n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 0 s | w ( t ) | d t 2 * s 2 - 2 n n - 2 d s 2 2 * = n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 s + | h ( t ) | d t 2 * s 2 n - 2 d s 2 2 * n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 g 2 * s 2 n - 2 d s 2 2 * .
(2.5)

Recall that s = rn-2βand g(r) = rβf(r),

0 g 2 * s 2 n - 2 d s = ( n - 2 β ) 0 ( r 1 - β g ) 2 * r n - 1 d r = ( n - 2 β ) 0 ( r f ) 2 * r n - 1 d r .
(2.6)

Therefore, by (2.3), (2.4), (2.5) and (2.6),

0 | f ( r ) | 2 r n + 1 d r - β ( n - β ) 0 | f ( r ) | 2 r n - 1 d r = ( n - 2 β ) 0 s 2 g s 2 d s ( n - 2 β ) 1 + 2 2 * n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 ( r f ) 2 * r n - 1 d r 2 2 * = ( n - 2 β ) 2 n - 2 n n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 ( r f ) 2 * r n - 1 d r 2 2 * .

Since | S n - 1 |= S n - 1 d ω= 2 π n 2 Γ ( n 2 ) and S n =πn ( n - 2 ) ( Γ ( n 2 ) Γ ( n ) ) 2 n , we have

n | L f | 2 d x - β ( n - β ) n f 2 d x = | S n - 1 | 0 | f ( r ) | 2 r n + 1 d r - β ( n - β ) | S n - 1 | 0 | f ( r ) | 2 r n - 1 d r | S n - 1 | ( n - 2 β ) 2 n - 2 n n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 ( r f ) 2 * r n - 1 d r 2 2 * = | S n - 1 | 2 n ( n - 2 β ) 2 n - 2 n n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n n | r f ( r ) | 2 * d x 2 2 * = n - 2 β n - 2 2 n - 2 n S n n | r f ( r ) | 2 * d x 2 2 * .

Let β= n - n 2 - 4 δ 2 when 0 ≤ δ < n2/4. Then, 0 ≤ β < n/2 and δ = β (n - β). Therefore,

n | L f | 2 d x - δ n f 2 d x n 2 - 4 δ ( n - 2 ) 2 n - 1 n S n n | r f ( r ) | 2 * d x 2 2 * .

Inequality (2.1) follows.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Decomposing f into spherical harmonics, we get (see e.g. [6])

f = k = 0 f k : = k = 0 g k ( r ) ϕ k ( σ ) ,

where ϕ k (σ) are the orthonormal eigenfunctions of the Laplace-Beltrami operator with responding eigenvalues

c k = k ( N + k - 2 ) , k 0 .

The functions g k (r) belong to C 0 ( n ) , satisfying g k (r) = O(rk) and g k ( r ) =O ( r k - 1 ) as r → 0. By orthogonality,

F ( r ) = 1 | S n - 1 | S n - 1 f ( r ω ) d ω = g 0 ( r ) .

On the other hand,

L f ( x ) = k = 0 r ( g k ( r ) ϕ k ) r = k = 0 r g k ( r ) ϕ k ( σ ) .

Here, we use the radial derivative r = x | x | = L | x | . Therefore,

n | L f | 2 d x - δ n f 2 d x = k = 0 n r 2 | g k ( r ) | 2 d x - δ n g k 2 d x n r 2 | g 0 ( r ) | 2 d x - δ n g 0 2 d x = n r 2 | F ( r ) | 2 d x - δ n F ( r ) 2 d x

since

n | L u | 2 d x n 2 4 n u 2 d x

holds for all u C 0 ( n ) and Lu=r u ( r ) if u is radial. By Lemma 2.2,

n r 2 | F ( r ) | 2 d x - δ n F ( r ) 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 *

Therefore,

n | L f | 2 d x - δ n f 2 d x n r 2 | F ( r ) | 2 d x - δ n F ( r ) 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 * .

The proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. We denote by B R Nthe unit ball centered at zero.

Step 1. Assume f is radial and f C 0 ( B R ) . Then,

B R | L f | 2 d x - n 2 4 B R f 2 d x = B R | r f ( r ) | 2 d x - n 2 4 B R f 2 ( r ) d x = B R | ( r f ( r ) ) | 2 d x - ( n - 2 ) 2 4 B R ( r f ) 2 | x | 2 d x .

Therefore, by Theorem B in [7],

B R | ( r f ( r ) ) | 2 d x - ( n - 2 ) 2 4 B R ( r f ) 2 | x | 2 d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r f | 2 n n - 2 d x n - 2 n ,

where

X 1 ( a , s ) : = ( a - ln s ) - 1 , a > 0 , 0 < s 1 .

Thus,

B R | L f | 2 d x - n 2 4 B R f 2 d x = B R | r f ( r ) | 2 d x - n 2 4 B R f 2 ( r ) d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r f | 2 n n - 2 d x n - 2 n .

Step 2. Assume f is not radial and f C 0 ( B R ) . We extend f as zero outside B R . So f C 0 ( n ) . Decomposing f into spherical harmonics, we have

f = k = 0 f k : = k = 0 g k ( r ) ϕ k ( σ ) ,

where ϕ k (σ) are the orthonormal eigenfunctions of the Laplace-Beltrami operator with responding eigenvalues

c k = k ( N + k - 2 ) , k 0 .

The functions f k (r) belong to C 0 ( B R ) . By the proof of Theorem 1.1 and Step 1,

n | L f | 2 d x - n 2 4 n f 2 d x = k = 0 n r 2 | g k ( r ) | 2 d x - n 2 4 n g k 2 d x n r 2 | g 0 ( r ) | 2 d x - n 2 4 n g 0 2 d x = n r 2 | F ( r ) | 2 d x - n 2 4 n F ( r ) 2 d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r F | 2 n n - 2 d x n - 2 n .

Step 3. By Step 1 and Step 2, the following inequality holds for f C 0 ( B R )

n | L f | 2 d x - n 2 4 n f 2 d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r F | 2 n n - 2 d x n - 2 n .

We note if R-1 < |x| < R, then

X 1 2 ( N - 1 ) N - 2 a , | x | D = 1 a - ln | x | R 2 ( N - 1 ) N - 2 1 a + 2 ln R 2 ( N - 1 ) N - 2 .

Therefore, If f is supported in the annulus A R := {xn: R-1 < |x| < R}, then

A R | L f | 2 d x - n 2 4 A R f 2 d x [ ( n - 2 ) ( 2 ln R + a ) ] - 2 ( n - 1 ) n S n A R | r F ( r ) | 2 * d x 2 2 * .

Letting a → 0, we have

A R | L f | 2 d x - n 2 4 A R f 2 d x [ 2 ( n - 2 ) ln R ] - 2 ( n - 1 ) n S n A R | r F ( r ) | 2 * d x 2 2 * .

The proof of Theorem 2 is completed.