1 Introduction and preliminaries

Fixed point theory has been studied extensively, which can be seen from the works of many authors [16]. Banach contraction principle was introduced in 1922 by Banach [7] as follows:

  1. (i)

    Let \((X,d)\) be a metric space and let \(T:X\to X\). Then T is called a Banach contraction mapping if there exists \(k\in[0, 1)\) such that

    $$d(Tx,Ty)\leq k d(x,y) $$

    for all \(x, y \in X\).

The concept of Kannan mapping was introduced in 1969 by Kannan [8] as follows:

  1. (ii)

    T is called a Kannan mapping if there exists \(r\in[0, \frac{1}{2})\) such that

    $$d(Tx, Ty) \leq r d(x,Tx) + r d(y, Ty) $$

    for all \(x, y \in X\).

Now, we recall the definition of cyclic map. Let A and B be nonempty subsets of a metric space \((X,d)\) and \(T: A\cup B\to A\cup B\). T is called a cyclic map iff \(T(A)\subseteq B\) and \(T(B)\subseteq A\).

In 2003, Kirk et al. [9] introduced cyclic contraction as follows:

  1. (iii)

    A cyclic map \(T: A\cup B\to A\cup B\) is said to be a cyclic contraction if there exists \(a\in[0, 1)\) such that

    $$d(Tx,Ty)\leq a d(x,y) $$

    for all \(x\in A\) and \(y\in B\).

In 2010, Karapinar and Erhan [10] introduced Kannan type cyclic contraction as follows:

  1. (iv)

    A cyclic map \(T: A\cup B\to A\cup B\) is called a Kannan type cyclic contraction if there exists \(b\in[0, \frac{1}{2})\) such that

    $$d(Tx, Ty) \leq bd(x,Tx) + b d(y, Ty) $$

    for all \(x\in A\) and \(y\in B\).

If \((X,d)\) is a complete metric space, at least one of (i), (ii), (iii) and (iv) holds, then it has a unique fixed point [710]. Next, we discuss the development of spaces. The concept of quasi-metric spaces was introduced by Wilson [11] in 1931 as a generalization of metric spaces, and in 2000 Hitzler and Seda [12] introduced dislocated metric spaces as a generalization of metric spaces, [13] generalized the result of Hitzler, Seda and Wilson and introduced the concept of dislocated quasi-metric space. Włodarczyk et al. (see [1421]) created uniform spaces as this is the concept of metric spaces. In 1989, Bakhtin [22] introduced b-metric space as a generalization of metric space. Moreover, Czerwik [23] made the results of Bakhtin known more in 1998. Finally, many other generalized b-metric spaces such as quasi-b-metric spaces [24], b-metric-like spaces [25] and quasi-b-metric-like spaces [26] were introduced.

We begin with the following definition as a recall from [11, 12].

Definition 1.1

[7, 11, 12]

Let X be a nonempty set. Suppose that the mapping \(d: X\times X\rightarrow [0,\infty)\) satisfies the following conditions:

(d1):

\(d(x,x)=0\) for all \(x\in X\);

(d2):

\(d(x,y)=d(y,x)=0\) implies \(x=y\) for all \(x,y\in X\);

(d3):

\(d(x,y)=d(y,x)\) for all \(x,y\in X\);

(d4):

\(d(x,y)\leq[d(x,z)+d(z,y)]\) for all \(x,y,z\in X\).

If d satisfies conditions (d1), (d2) and (d4), then d is called a quasi-metric on X. If d satisfies conditions (d2), (d3) and (d4), then d is called a dislocated metric on X. If d satisfies conditions (d1)-(d4), then d is called a metric on X.

In 2005 the concept of dislocated quasi-metric spaces [13], which is a new generalization of quasi-b-metric spaces and dislocated b-metric spaces, was introduced. By Definition 1.1, if setting conditions (d2) and (d4) hold true, then d is called a dislocated quasi-metric on X.

Remark 1.2

It is obvious that metric spaces are quasi-metric spaces and dislocated metric spaces, but the converse is not true.

In 1989, Bakhtin [22] introduced the concept of b-metric spaces and investigated some fixed point theorems in such spaces.

Definition 1.3

[22]

Let X be a nonempty set. Suppose that the mapping \(b: X\times X\rightarrow[0,\infty)\) such that the constant \(s\geq1\) satisfies the following conditions:

(b1):

\(b(x,y)=b(y,x)=0 \Leftrightarrow x=y\) for all \(x,y\in X\);

(b2):

\(b(x,y)=b(y,x)\) for all \(x,y\in X\);

(b3):

\(b(x,y)\leq s[b(x,z)+b(z,y)]\) for all \(x,y,z\in X\).

The pair \((X, b)\) is then called a b-metric space.

Remark 1.4

It is obvious that metric spaces are b-metric spaces, but conversely this is not true.

In 2012, Shah and Hussain [24] introduced the concept of quasi-b-metric spaces and verified some fixed point theorems in quasi-b-metric spaces.

Definition 1.5

[24]

Let X be a nonempty set. Suppose that the mapping \(q: X\times X\rightarrow[0,\infty)\) such that constant \(s\geq1\) satisfies the following conditions:

(q1):

\(q(x,y)=q(y,x)=0 \Leftrightarrow x=y\) for all \(x,y\in X\);

(q2):

\(q(x,y)\leq s[q(x,z)+q(z,y)]\) for all \(x,y,z\in X\).

The pair \((X, q)\) is then called a quasi-b-metric space.

Remark 1.6

It is obvious that b-metric spaces are quasi-b-metric spaces, but conversely this is not true.

Recently, the concept of b-metric-like spaces, which is a new generalization of metric-like spaces, was introduced by Alghamdi et al. [25].

Definition 1.7

[25]

Let X be a nonempty set. Suppose that the mapping \(D: X\times X\rightarrow[0,\infty)\) such that constant \(s\geq1\) satisfies the following conditions:

(D1):

\(D(x,y)=0 \Rightarrow x=y\) for all \(x,y\in X\);

(D2):

\(D(x,y)=D(y,x)\) for all \(x,y\in X\);

(D3):

\(D(x,y)\leq s[D(x,z)+D(z,y)]\) for all \(x,y,z\in X\).

The pair \((X, D)\) is then called a b-metric-like space (or a dislocated b-metric space).

Remark 1.8

It is obvious that b-metric spaces are b-metric-like spaces, but conversely this is not true.

In this paper we introduce dislocated quasi-b-metric spaces which generalize quasi-b-metric spaces and b-metric-like spaces, and we introduce the notions of Geraghty type dqb-cyclic-Banach contraction and dqb-cyclic-Kannan mapping and derive the existence of fixed point theorems for such spaces. Our main theorems extend and unify existing results in the recent literature.

2 Main results

In this section, we begin with introducing the notion of dislocated quasi-b-metric space.

Definition 2.1

Let X be a nonempty set. Suppose that the mapping \(d: X\times X\rightarrow[0,\infty)\) such that constant \(s\geq 1\) satisfies the following conditions:

  1. (d1)

    \(d(x,y)=d(y,x)=0\) implies \(x=y\) for all \(x,y\in X\);

  2. (d2)

    \(d(x,y)\leq s[d(x,z)+d(z,y)]\) for all \(x,y,z\in X\).

The pair \((X, d)\) is then called a dislocated quasi-b-metric space (or simply dqb-metric). The number s is called the coefficient of \((X, d)\).

Remark 2.2

It is obvious that b-metric spaces, quasi-b-metric spaces and b-metric-like spaces are dislocated quasi-b-metric spaces, but the converse is not true.

Example 2.3

Let \(X=\mathbb{R}\) and let

$$d(x,y)=|x-y|^{2}+\frac{|x|}{n}+\frac{|y|}{m}, $$

where \(n,m \in\mathbb{N}\setminus\{1\}\) with \(n\neq m\).

Then \((X, d)\) is a dislocated quasi-b-metric space with the coefficient \(s =2\), but since \(d(1, 1) \neq 0\), we have \((X, b)\) is not a quasi-b-metric space, and since \(d(1, 2) \neq d(2, 1) \), we have \((X, b)\) is not a b-metric-like space. And \((X, b)\) is not a dislocated quasi-metric space. Indeed, let \(x,y,z\in X\). Suppose that \(d(x,y)=0\).

Then

$$|x-y|^{2}+\frac{|x|}{n}+\frac{|y|}{m}=0. $$

It implies that \(|x-y|^{2}=0\), and so \(x=y\).

Next, consider

$$\begin{aligned} d(x,y)&=|x-y|^{2}+\frac{|x|}{n}+\frac{|y|}{m} \\ &\leq\bigl(\vert x-z\vert +|z-y|\bigr)^{2}+\frac{|x|}{n}+ \frac{|y|}{m} \\ &\leq |x-z|^{2}+2|x-z|\cdot|z-y|+|z-y|^{2}+ \frac{|x|}{n}+\frac {|y|}{m} \\ &\leq 2\bigl(|x-z|^{2}+|z-y|^{2}\bigr)+\frac{|x|}{n}+ \frac{|z|}{m}+\frac {|z|}{n}+\frac{|y|}{m} \\ &\leq s \bigl[d(x,z)+d(z,y)\bigr], \end{aligned}$$

where \(s=2\),

$$\begin{aligned} d\biggl(\frac{1}{2}, \frac{1}{4}\biggr)&=\biggl\vert \frac{1}{2}- \frac {1}{4}\biggr\vert ^{2}+ \frac{|\frac{1}{2}|}{n}+\frac{|\frac{1}{4}|}{m} = \frac{1}{16}+\frac{1}{2n}+\frac{1}{4m} \\ &= \frac{324}{5\text{,}184}+\frac{3}{6n}+\frac{4}{12m} >\frac{180}{5\text{,}184}+\frac{5}{6n}+\frac{7}{12m} \\ &= \frac{1}{36}+\frac{1}{2n}+\frac{1}{3m} +\frac{1}{144}+ \frac {1}{3n}+\frac{1}{4m} \\ &=\biggl\vert \frac{1}{2}- \frac{1}{3}\biggr\vert ^{2}+\frac{|\frac{1}{2}|}{n}+\frac{|\frac {1}{3}|}{m}+\biggl|\frac{1}{3}- \frac{1}{4}\biggr|^{2}+\frac{|\frac{1}{3}|}{n}+\frac {|\frac{1}{4}|}{m} \\ &=d\biggl(\frac{1}{2}, \frac{1}{3}\biggr)+d\biggl( \frac{1}{3}, \frac{1}{4}\biggr), \end{aligned}$$

where \(n,m>42\).

Example 2.4

[26]

Let \(X = \{0, 1, 2\}\), and let \(d: X\times X\to\mathbb{R}^{+}\) be defined by

$$ d(x,y)= \begin{cases} 2 ;& x=y=0, \\ \frac{1}{2};& x=0, y=1, \\ 2; &x=1, y=0, \\ \frac{1}{2}; &\mbox{otherwise}. \end{cases} $$

Then \((X, d)\) is a dislocated quasi-b-metric space with the coefficient \(s =2\), but since \(d(1, 1) \neq 0\), we have \((X, b)\) is not a quasi-b-metric space, and since \(d(1, 2) \neq d(2, 1) \), we have \((X, b)\) is not a b-metric-like space. It is obvious that \((X, b)\) is not a dislocated quasi-metric space.

Example 2.5

Let \(X=\mathbb{R}\) and let

$$d(x,y)=|x-y|^{2}+3|x|^{2}+2|y|^{2}. $$

Then \((X, d)\) is a dislocated quasi-b-metric space with the coefficient \(s =2\), but since \(d(0, 1) \neq d(1, 0)\), we have \((X, b)\) is not a b-metric-like space, since \(d(1, 1) \neq 0\), we have \((X, b)\) is not a quasi-b-metric space. It is obvious that \((X, b)\) is not a dislocated quasi-metric space.

Example 2.6

Let \(X=\mathbb{R}\) and let

$$d(x,y)=|2x-y|^{2}+|2x+y|^{2}. $$

Then \((X, d)\) is a dislocated quasi-b-metric space with the coefficient \(s =2\), but since \(d(1, 1) \neq 0\), we have \((X, b)\) is not a quasi-b-metric space. It is obvious that \((X, b)\) is not a dislocated quasi-metric space.

We will introduce a dislocated quasi-b-convergent sequence, a Cauchy sequence and a complete space according to Zoto et al. [27].

Definition 2.7

  1. (1)

    A sequence \((\{x_{n}\})\) in a dqb-metric space \((X,d)\) dislocated quasi-b-converges (for short, dqb-converges) to \(x\in X\) if

    $$\lim_{n\to\infty}d(x_{n},x)=0=\lim_{n\to\infty}d(x,x_{n}). $$

    In this case x is called a dqb-limit of \((\{x_{n}\})\), and we write \((x_{n}\to x)\).

  2. (2)

    A sequence \((\{x_{n}\})\) in a dqb-metric space \((X,d)\) is called Cauchy if

    $$\lim_{n,m\to\infty}d(x_{n},x_{m})=0=\lim _{n,m\to\infty}d(x_{m},x_{n}). $$
  3. (3)

    A dqb-metric space \((X,d)\) is complete if every Cauchy sequence in it is dqb-convergent in X.

Next, we begin with introducing the concept of a dqb-cyclic-Banach contraction.

Definition 2.8

Let A and B be nonempty subsets of a dislocated quasi-b-metric space \((X,d)\). A cyclic map \(T: A\cup B\to A\cup B\) is said to be a dqb-cyclic-Banach contraction if there exists \(k\in [0, 1)\) such that

$$ d(Tx,Ty)\leq kd(x,y) $$
(2.1)

for all \(x\in A\), \(y\in B\) and \(s\geq1\) and \(sk \leq1\).

Now we prove our main results.

Theorem 2.9

Let A and B be nonempty subsets of a complete dislocated quasi-b-metric space \((X,d)\). Let T be a cyclic mapping that satisfies the condition of a dqb-cyclic-Banach contraction. Then T has a unique fixed point in \(A\cap B \).

Proof

Let \(x\in A (\mathrm{fix})\) and, using the contractive condition of the theorem, we have

$$\begin{aligned} d\bigl(T^{2}x,Tx\bigr)&=d\bigl(T(Tx),Tx\bigr) \\ &\leq kd(Tx,x) \end{aligned}$$

and

$$\begin{aligned} d\bigl(Tx,T^{2}x\bigr)&=d\bigl(Tx,T(Tx)\bigr) \\ &\leq kd(x,Tx). \end{aligned}$$

So,

$$ d\bigl(T^{2}x,Tx\bigr)\leq k\alpha $$
(2.2)

and

$$ d\bigl(Tx,T^{2}x\bigr)\leq k\alpha, $$
(2.3)

where \(\alpha=\max\{d(Tx,x),d(x,Tx)\}\).

By using (2.2) and (2.3), we have \(d(T^{3}x,T^{2}x)\leq k^{2}\alpha\), and \(d(T^{2}x,T^{3}x)\leq k^{2}\alpha\).

For all \(n\in\mathbb{N}\), we get

$$d\bigl(T^{n+1}x,T^{n}x\bigr)\leq k^{n}\alpha $$

and

$$d\bigl(T^{n}x,T^{n+1}x\bigr)\leq k^{n}\alpha. $$

Let \(n,m\in\mathbb{N}\) with \(m>n\), by using the triangular inequality, we have

$$\begin{aligned} d\bigl(T^{m}x,T^{n}x\bigr) \leq& s^{m-n}d \bigl(T^{m}x,T^{m-1}x\bigr)+s^{m-n-1}d \bigl(T^{m-1}x,T^{m-2}x\bigr)+\cdots+sd\bigl(T^{n+1}x,T^{n}x \bigr) \\ \leq& \bigl(s^{m-n}k^{m-1}+s^{m-n-1}k^{m-2}+s^{m-n-2}k^{m-3}+ \cdots+s^{2}k^{n+1}+sk^{n}\bigr)\alpha \\ =& \bigl((sk)^{m-n}k^{n-1}+(sk)^{m-n-1}k^{m-2}+(sk)^{m-n-2}k^{n-1}+ \cdots \\ &{}+(sk)^{2}k^{n-1}+(sk)k^{n-1}\bigr)\alpha \\ \leq& \bigl(k^{n-1}+k^{n-1}+k^{n-1}+ \cdots+k^{n-1}+k^{n-1}\bigr)\alpha \\ = &\bigl(k^{n-1}\bigr) (m-n+1)\alpha \\ \leq& \bigl(k^{n-1}\bigr)\xi\alpha \end{aligned}$$

for some \(\xi>m-n+1\).

Take \(n\to\infty\), we get \(d(T^{m}x,T^{n}x)\to0\).

Similarly, let \(n,m\in\mathbb{N}\) with \(m>n\), by using the triangular inequality, we have

$$ d\bigl(T^{n}x,T^{m}x\bigr)= \bigl(k^{n-1}\bigr)\xi \alpha. $$

Take \(n\to\infty\), we get \(d(T^{n}x,T^{m}x)\to0\). Thus \(T^{n}x\) is a Cauchy sequence.

Since \((X,d)\) is complete, we have \(\{T^{n}x\}\) converges to some \(z\in X\).

We note that \(\{T^{2n}x\}\) is a sequence in A and \(\{T^{2n-1}x\}\) is a sequence in B in a way that both sequences tend to the same limit z.

Since A and B are closed, we have \(z\in A\cap B\), and then \(A\cap B\neq{\emptyset}\).

Now, we will show that \(Tz=z\).

By using (2.1), consider

$$\begin{aligned} d\bigl(T^{n}x,Tz\bigr)&=d\bigl(T\bigl(T^{n-1}x\bigr),Tz\bigr) \\ &\leq kd\bigl(T^{n-1}x,z\bigr) \\ &\leq d\bigl(T^{n-1}x,z\bigr). \end{aligned}$$

Taking limit as \(n\to\infty\) in the above inequality, we have

$$d(z,Tz)\leq kd(z,Tz)\leq d(z,Tz). $$

And so \(d(z,Tz)=kd(z,Tz)\), where \(0\leq k<1\). This implies that \(d(z,Tz)=0\).

Similarly, considering form (2.1), we get

$$\begin{aligned} d\bigl(Tz,T^{n}x\bigr)&=d\bigl(Tz,T\bigl(T^{n-1}x\bigr)\bigr) \\ &\leq kd\bigl(z,T^{n-1}x\bigr) \\ &\leq d\bigl(z,T^{n-1}x\bigr) . \end{aligned}$$

Taking limit as \(n\to\infty\) in the above inequality, we have

$$d(Tz,z)\leq kd(Tz,z)\leq d(Tz,z). $$

And so \(d(Tz,z)=kd(Tz,z)\), where \(0\leq k<1\). This implies that \(d(Tz,z)=0\).

Hence \(d(z,Tz)=d(Tz,z)=0\), this implies that \(Tz=z\), that is, z is a fixed point of T.

Finally, to prove the uniqueness of a fixed point, let \(z^{*}\in X\) be another fixed point of T such that \(Tz^{*}=z^{*}\).

Then we have

$$ d\bigl(z,z^{*}\bigr)=d\bigl(Tz,Tz^{*}\bigr)\leq kd\bigl(z,z^{*}\bigr) . $$
(2.4)

On the other hand,

$$ d\bigl(z^{*},z\bigr)=d\bigl(Tz^{*},Tz\bigr)\leq kd\bigl(z^{*},z\bigr) . $$
(2.5)

By forms (2.4) and (2.5), we obtain that \(d(z,z^{*})=d(z^{*},z)=0\), this implies that \(z^{*}=z\).

Therefore z is a unique fixed point of T. This completes the proof. □

Example 2.10

Let \(X=[-1,1]\) and \(T: A\cup B\to A\cup B\) defined by \(Tx=\frac{-x}{5}\). Suppose that \(A=[-1,0]\) and \(B=[0,1]\). Define the function \(d:X^{2}\to[0,\infty)\) by

$$d(x,y)=|x-y|^{2}+\frac{|x|}{10}+\frac{|y|}{11}. $$

We see that d is a dislocated quasi-b-metric on X.

Now, let \(x\in A\). Then \(-1\leq x\leq0\). So, \(0\leq\frac{-x}{5}\leq \frac{1}{5}\). Thus, \(Tx\in B\).

On the other hand, let \(x\in B\). Then \(0\leq x\leq1\). So, \(\frac {-1}{5}\leq\frac{-x}{5}\leq0\). Thus, \(Tx\in A\).

Hence the map T is cyclic on X because \(T(A)\subset B\) and \(T(B)\subset A\).

Next, we consider

$$\begin{aligned} d(Tx,Ty)&=|Tx-Ty|^{2}+3|Tx|+2|Ty| \\ &=\biggl\vert \frac{-x}{5}-\frac{-y}{5}\biggr\vert ^{2}+\frac{1}{10}\biggl\vert \frac{-x}{5}\biggr\vert + \frac {1}{11}\biggl\vert \frac{-y}{5}\biggr\vert \\ &=\frac{1}{25}|x-y|^{2}+\frac{1}{50}|x|+ \frac{2}{55}|y| \\ &\leq\frac{1}{5}\biggl[|x-y|^{2}+\frac{1}{10}|x|+ \frac{1}{11}|y|\biggr] \\ &\leq kd(x,y), \end{aligned}$$

so for \(\frac{1}{5}\leq k<1\).

Thus T satisfies the dqb-cyclic-Banach contraction of Theorem 2.9 and 0 is the unique fixed point of T.

Finally, we begin with introducing the concept of dqb-cyclic-Kannan mapping.

Definition 2.11

Let A and B be nonempty subsets of a dislocated quasi-b-metric space \((X,d)\). A cyclic map \(T: A\cup B\to A\cup B\) is called a dqb-cyclic-Kannan mapping if there exists \(r\in[0, \frac{1}{2})\) such that

$$ d(Tx,Ty)\leq r\bigl(d(x,Tx)+d(x,Ty)\bigr) $$
(2.6)

for all \(x\in A\), \(y\in B\) and \(s\geq1\) and \(sr \leq\frac{1}{2}\).

In the next theorem, we will prove the fixed point theorem for a cyclic-Kannan mapping in a dislocated quasi-b-metric space.

Theorem 2.12

Let A and B be nonempty subsets of a complete dislocated quasi-b-metric space \((X,d)\). Let T be a cyclic mapping that satisfies the condition of a dqb-cyclic-Kannan mapping. Then T has a unique fixed point in \(A\cap B \).

Proof

Let \(x\in A (\mathrm{fix})\) and, using the contractive condition of the theorem, we have

$$\begin{aligned} d\bigl(Tx,T^{2}x\bigr)&=d\bigl(Tx,T(Tx)\bigr) \\ &\leq rd(x,Tx)+rd\bigl(Tx,T^{2}x\bigr), \end{aligned}$$

so

$$ d\bigl(Tx,T^{2}x\bigr)\leq\frac{r}{1-r}d(x,Tx). $$
(2.7)

And from (2.7) we have

$$\begin{aligned} d\bigl(T^{2}x,Tx\bigr)&=d\bigl(T(Tx),Tx\bigr) \\ &\leq rd\bigl(Tx,T^{2}x\bigr)+rd(x,Tx) \\ &\leq\frac{r}{1-r}d(x,Tx)+rd(x,Tx) \\ &\leq\biggl(\frac{r}{1-r}+\frac{r}{1-r}\biggr)d(x,Tx) \\ &\leq\frac{r}{1-r}2d(x,Tx), \end{aligned}$$

so

$$ d\bigl(Tx,T^{2}x\bigr)\leq\frac{r}{1-r}\beta, $$
(2.8)

where \(\beta=2d(x,Tx)\).

By using (2.7) and (2.8), we have

$$d\bigl(T^{3}x,T^{2}x\bigr)\leq\biggl(\frac{r}{1-r} \biggr)^{2}\beta $$

and

$$d\bigl(T^{2}x,T^{3}x\bigr)\leq\biggl(\frac{r}{1-r} \biggr)^{2}\beta. $$

For all \(n\in\mathbb{N}\), we get

$$d\bigl(T^{n+1}x,T^{n}x\bigr)\leq\biggl(\frac{r}{1-r} \biggr)^{n}\beta $$

and

$$d\bigl(T^{n}x,T^{n+1}x\bigr)\leq\biggl(\frac{r}{1-r} \biggr)^{n}\beta. $$

Let \(n,m\in\mathbb{N}\) with \(m>n\), by using the triangular inequality, we have

$$\begin{aligned} d\bigl(T^{m}x,T^{n}x\bigr) \leq& s^{m-n}d \bigl(T^{m}x,T^{m-1}x\bigr)+s^{m-n-1}d \bigl(T^{m-1}x,T^{m-2}x\bigr)+\cdots+sd\bigl(T^{n+1}x,T^{n}x \bigr) \\ \leq& \bigl(s^{m-n}k^{m-1}+s^{m-n-1}k^{m-2}+s^{m-n-2}k^{m-3}+ \cdots+s^{2}k^{n+1}+sk^{n}\bigr)\beta \\ \leq& \biggl(\biggl(\frac{r}{1-r}\biggr)^{n-1}+\biggl( \frac{r}{1-r}\biggr)^{n-1}+\biggl(\frac {r}{1-r} \biggr)^{n-1}+\cdots \\ &{}+\biggl(\frac{r}{1-r}\biggr)^{n-1}+ \biggl(\frac{r}{1-r}\biggr)^{n-1}\biggr)\beta \\ =& \biggl(\frac{r}{1-r}\biggr)^{n-1}(m-n+1)\beta \\ < & \biggl(\frac{r}{1-r}\biggr)^{n-1}\xi\beta \end{aligned}$$

for some \(\xi>m-n+1\). Take \(n\to\infty\), we get \(d(T^{m}x,T^{n}x)\to0\).

Similarly, let \(n,m\in\mathbb{N}\) with \(m>n\), by using the triangular inequality, we have

$$ d\bigl(T^{n}x,T^{m}x\bigr) < \biggl(\frac{r}{1-r} \biggr)^{n-1}\xi\beta. $$

Take \(n\to\infty\), we get \(d(T^{n}x,T^{m}x)\to0\). Thus \(T^{n}x\) is a Cauchy sequence.

Since \((X,d)\) is complete, we have \(\{(T^{n}x)\}\) converges to some \(z\in X\).

We note that \(\{T^{2n}x\}\) is a sequence in A and \(\{T^{2n-1}x\}\) is a sequence in B in a way that both sequences tend to the same limit z.

Since A and B are closed, we have \(z\in A\cap B\), and then \(A\cap B\neq{\emptyset}\).

Now, we will show that \(Tz=z\).

By using (2.6), consider

$$\begin{aligned} d\bigl(T^{n}x,Tz\bigr)&=d\bigl(T\bigl(T^{n-1}x\bigr),Tz\bigr) \\ &\leq rd\bigl(T^{n-1}x,T^{n}x\bigr)+rd(z,Tz). \end{aligned}$$

Taking limit as \(n\to\infty\) in the above inequality, we have

$$ d(z,Tz) \leq rd(z,Tz). $$

Since \(0\leq r<\frac{1}{2}\), we have \(d(z,Tz)=0\).

Similarly, considering form (2.6), we get

$$\begin{aligned} d\bigl(Tz,T^{n}x\bigr)&=d\bigl(Tz,T\bigl(T^{n-1}x\bigr)\bigr) \\ &\leq rd(z,Tz)+rd\bigl(T^{n-1}x,T^{n}x\bigr) . \end{aligned}$$

Taking limit as \(n\to\infty\) in the above inequality, we have

$$d(Tz,z)\leq rd(z,Tz). $$

Since \(d(z,Tz)=0\), we have \(d(z,Tz)=0\).

Hence \(d(z,Tz)=d(Tz,z)=0 \Rightarrow Tz=z\) and z is a fixed point of T.

Finally, to prove the uniqueness of a fixed point, let \(z^{*}\in X\) be another fixed point of T such that \(Tz^{*}=z^{*}\).

Then we have \(d(z,z) =d(z^{*},z^{*})=0\), because by assumption

$$\begin{aligned} \begin{aligned}[b] d\bigl(z,z^{*}\bigr)&=d\bigl(Tz,Tz^{*}\bigr) \\ &\leq rd(z,Tz) +rd\bigl(z^{*},Tz^{*}\bigr) \\ &=rd(z,z) +rd\bigl(z^{*},z^{*}\bigr) \\ &=0. \end{aligned} \end{aligned}$$
(2.9)

On the other hand,

$$\begin{aligned} d\bigl(z^{*},z\bigr)&=d\bigl(Tz^{*},Tz\bigr) \\ &\leq r d\bigl(z^{*},Tz^{*}\bigr) +rd(z,Tz) \\ &= rd\bigl(z^{*},z^{*}\bigr) +rd(z,z) \\ &=0. \end{aligned}$$
(2.10)

By forms (2.9) and (2.10), we obtain that \(d(z,z^{*})=d(z^{*},z)=0 \Rightarrow z^{*}=z\).

Therefore z is a unique fixed point of T. This completes the proof. □

Example 2.13

Let \(X=[-1,1]\) and \(T:X\to X\) defined by \(Tx=\frac{-x}{7}\). Suppose that \(A=[-1,0]\) and \(B=[0,1]\). Define the function \(d:X^{2}\to[0,\infty)\) by

$$d(x,y)=|x-y|^{2}+3|x|+2|y|. $$

We see that d is a dislocated quasi-b-metric on X.

Now, let \(x\in A\). Then \(-1\leq x\leq0\). So, \(0\leq\frac{-x}{7}\leq\frac{1}{7}\). Thus, \(Tx\in B\).

On the other hand, let \(x\in B\). Then \(0\leq x\leq1\). So, \(\frac {-1}{7}\leq\frac{-x}{7}\leq0\). Thus, \(Tx\in A\).

Hence the map T is cyclic on X because \(T(A)\subset B\) and \(T(B)\subset A\).

Next, we consider

$$\begin{aligned} d(Tx,Ty)&=|Tx-Ty|^{2}+3|Tx|+2|Ty| \\ &=\biggl\vert \frac{-x}{7}-\frac{-y}{7}\biggr\vert ^{2}+3\biggl\vert \frac{-x}{7}\biggr\vert +2\biggl\vert \frac{-y}{7}\biggr\vert \\ &=\frac{1}{49}|x-y|^{2}+\frac{3}{7}|x|+ \frac{2}{7}|y| \\ &\leq\frac{1}{49}\bigl(\vert x\vert +|y|\bigr)^{2}+ \frac{3}{7}|x|+\frac{2}{7}|y| \\ &\leq\frac{2}{49}|x|^{2}+\frac{2}{49}|y|^{2}+ \frac{3}{7}|x|+\frac {2}{7}|y| \\ &\leq\frac{2}{23}\biggl(\biggl[\frac{64}{49}|x|^{2}+ \frac{23}{7}|x|\biggr]+\biggl[\frac {64}{49}|y|^{2}+ \frac{23}{7}|y|\biggr] \biggr) \\ &=\frac{2}{23}\biggl(\biggl[\frac{64}{49}|x|^{2}+ \frac{23}{7}|x|\biggr]+\biggl[\frac {64}{49}|y|^{2}+ \frac{23}{7}|y| \biggr]\biggr) \\ &=\frac{2}{23}\biggl(\biggl[\biggl\vert x+\frac{1}{7}x\biggr\vert ^{2}+3|x|+2\biggl\vert \frac{1}{7}x\biggr\vert \biggr]+\biggl[\biggl\vert y+\frac {1}{7}y\biggr\vert ^{2}+3|y|+2\biggl\vert \frac{1}{7}y\biggr\vert \biggr] \biggr) \\ &=\frac{2}{23}\bigl(\bigl[|x-Tx|^{2}+3|x|+2|Tx|\bigr]+ \bigl[|y-Ty|^{2}+3|y|+2|Ty|\bigr]\bigr) \\ &= r\bigl(d(x,Tx)+d(y,Ty)\bigr), \end{aligned}$$

so for \(\frac{2}{23}\leq r<\frac{1}{2}\).

Thus T satisfies the dqb-cyclic-Banach contraction of Theorem 2.12 and 0 is the unique fixed point of T.