Skip to main content
Log in

Expression, Regulation, and Function of the Calmodulin Accessory Protein PCP4/PEP-19 in Myometrium

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective: Calmodulin (CaM) plays a key role in the orchestration of Ca2+ signaling events, and its regulation is considered an important component of cellular homeostasis. The control of uterine smooth muscle function is largely dependent on the regulation of Ca2+ and CaM signaling. The objective of this study was to investigate the expression, function, and regulation of CaM regulatory proteins in myometrium during pregnancy. Study Design: Myometrium was obtained from nonpregnant women and 4 groups of pregnant women at the time their primary cesarean delivery: (i) preterm not in labor, (ii) preterm in labor with clinical and/or histological diagnosis of chorioamnionitis, (3) term not in labor; and (4) term in labor. The effect of perinatal inflammation on pcp4/pep-19 expression was evaluated in a mouse model of Ureaplasma parvum-induced chorioamnionitis. Human myometrial cells stably expressing wild-type and mutant forms of PCP4/PEP-19 were used in the evaluation of agonist-induced intracellular Ca2+ mobilization. Results: Compared to other CaM regulatory proteins, PCP4/PEP-19 transcripts were more abundant in human myometrium. The expression of PCP4/PEP-19 was lowest in myometrium of women with preterm pregnancy and chorioamnionitis. In the mouse uterus, pcp4/pep-19 expression was lower in late compared to mid-gestation and decreased in mice injected intra-amniotic with Ureaplasma parvum. In myometrial smooth muscle cells, tumor necrosis factor alpha and progesterone decreased and PCP4/PEP-19 promoter activity increased. Finally, the overexpression of PCP4/PEP-19 reduced agonist-induced intracellular Ca2+ levels in myometrial cells. Conclusion: The decreased expression of PCP4/PEP-19 in myometrium contributes to a loss of quiescence in response to infection-induced inflammation at preterm pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garfield RE, Saade G, Buhimschi C, et al. Control and assessment of the uterus and cervix during pregnancy and labour. Hum Reprod Update. 1998;4(5):673–695.

    Article  CAS  PubMed  Google Scholar 

  2. Norwitz ER, Robinson JN, Challis JR. The control of labor. N EnglJMed. 1999;341(9):660–666.

    Article  CAS  Google Scholar 

  3. Taussig R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995;270(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  4. Beckingham K, Lu AQ, Andruss BF. Calcium-binding proteins and development. Biometals. 1998;11(4):359–373.

    Article  CAS  PubMed  Google Scholar 

  5. Landry J, Crete P, Lamarche S, Chretien P. Activation of Ca2+-dependent processes during heat shock: role in cell thermoresistance. Radiat Res. 1988;113(3):426–436.

    Article  CAS  PubMed  Google Scholar 

  6. Pierce SK, Politis AD, Cronkite DH, Rowland LM, Smith LH Jr. Evidence of calmodulin involvement in cell volume recovery following hypo-osmotic stress. Cell Calcium. 1989;10(3):159–169.

    Article  CAS  PubMed  Google Scholar 

  7. Lee A, Wong ST, Gallagher D, et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature. 1999;399(6732):155–159.

    Article  CAS  PubMed  Google Scholar 

  8. Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 1999;96(6):3239–3244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerendasy DD, Herron SR, Watson JB, Sutcliffe JG. Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability. J Biol Chem. 1994;269(35):22420–22426.

    Article  CAS  PubMed  Google Scholar 

  10. Putkey JA, Kleerekoper Q, Gaertner TR, Waxham MN. A new role for IQ motif proteins in regulating calmodulin function. J Biol Chem. 2003;278(50):49667–49670.

    Article  CAS  PubMed  Google Scholar 

  11. Slemmon JR, Feng B, Erhardt JA. Small proteins that modulate calmodulin-dependent signal transduction: effects of PEP-19, neuromodulin, and neurogranin on enzyme activation and cellular homeostasis. Mol Neurobiol. 2000;22(1–3):99–113.

    Article  CAS  PubMed  Google Scholar 

  12. Kanamori T, Takakura K, Mandai M, et al. PEP-19 overexpression in human uterine leiomyoma. Mol Hum Reprod. 2003;9(11):709–717.

    Article  CAS  PubMed  Google Scholar 

  13. Slemmon JR, Morgan JI, Fullerton SM, Danho W, Hilbush BS, Wengenack TM. Camstatins are peptide antagonists of calmodulin based upon a conserved structural motif in PEP-19, neurogranin, andneuromodulin. J Biol Chem. 1996;271(27):15911–15917.

    Article  CAS  PubMed  Google Scholar 

  14. Iwamoto K, Bundo M, Yamamoto M, Ozawa H, Saito T, Kato T. Decreased expression of NEFH and PCP4/PEP19 in the prefrontal cortex of alcoholics. Neurosci Res. 2004;49(4):379–385.

    Article  CAS  PubMed  Google Scholar 

  15. Utal AK, Stopka AL, Roy M, Coleman PD. PEP-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain, and is dramatically reduced in Huntington's disease. Neuroscience. 1998;86(4):1055–1063.

    Article  CAS  PubMed  Google Scholar 

  16. Skold K, Svensson M, Nilsson A, et al. Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J Proteome Res. 2006;5(2):262–269.

    Article  PubMed  CAS  Google Scholar 

  17. Xie YY, Sun MM, Lou XF, et al. Overexpression of PEP-19 suppresses angiotensin II-induced cardiomyocyte hypertrophy. J Pharmacol Sci. 2014;125(3):274–282.

    Article  CAS  PubMed  Google Scholar 

  18. Prakash K, Pirozzi G, Elashoff M, et al. Symptomatic and asymptomatic benign prostatic hyperplasia: molecular differentiation by using microarrays. Proc Natl Acad Sci USA. 2002;99(11):7598–7603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Souda M, Umekita Y, Abeyama K, Yoshida H. Gene expression profiling during rat mammary carcinogenesis induced by 7,12-dimethylbenz[a]anthracene. Int J Cancer. 2009;125(6):1285–1297.

    Article  CAS  PubMed  Google Scholar 

  20. Felizola SJ, Nakamura Y, Ono Y, et al. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues. J Mol Endocrinol. 2014;52(2):159–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamada T, Souda M, Yoshimura T, et al. Anti-apoptotic effects of PCP4/PEP19 in human breast cancer cell lines: a novel oncotarget. Oncotarget. 2014;5(15):6076–6086.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Visser E, Franken IA, Brosens LA, Ruurda JP, van Hillegersberg R. Prognostic gene expression profiling in esophageal cancer: a systematic review. Oncotarget. 2017;8(3):5566–5577.

    Article  PubMed  Google Scholar 

  23. Harashima S, Wang Y, Horiuchi T, Seino Y, Inagaki N. Purkinje cell protein 4 positively regulates neurite outgrowth and neurotransmitter release. J Neurosci Res. 2011;89(10):1519–1530.

    Article  CAS  PubMed  Google Scholar 

  24. Mouton-Liger F, Thomas S, Rattenbach R, et al. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+)/calmodulin-dependent kinase II-delta activation in mouse models of Down syndrome. J Comp Neurol. 2011;519(14):2779–2802.

    Article  CAS  PubMed  Google Scholar 

  25. Wei P, Blundon JA, Rong Y, Zakharenko SS, Morgan JI. Impaired locomotor learning and altered cerebellar synaptic plasticity in pep-19/PCP4-null mice. Mol Cell Biol. 2011;31(14):2838–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim EE, Shekhar A, Lu J, et al. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124(11):5027–5036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erhardt JA, Legos JJ, Johanson RA, Slemmon JR, Wang X. Expression of PEP-19 inhibits apoptosis in PC12 cells. Neuroreport. 2000;11(17):3719–3723.

    Article  CAS  PubMed  Google Scholar 

  28. Kanazawa Y, Makino M, Morishima Y, Yamada K, Nabeshima T, Shirasaki Y. Degradation of PEP-19, a calmodulin-binding protein, by calpain is implicated in neuronal cell death induced by intracellular Ca2+ overload. Neuroscience. 2008;154(2):473–481.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Xiong LW, El Ayadi A, Boehning D, Putkey JA. The calmodulin regulator protein, PEP-19, sensitizes ATP-induced Ca2+ release. J Biol Chem. 2013;288(3):2040–2048.

    Article  CAS  PubMed  Google Scholar 

  30. Weiner CP, Mason CW, Dong Y, Buhimschi IA, Swaan PW, Buhimschi CS. Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. Am J Obstet Gynecol. 2010;202(5):474 e1–20.

    Article  CAS  Google Scholar 

  31. Buhimschi CS, Dulay AT, Abdel-Razeq S, et al. Fetal inflammatory response in women with proteomic biomarkers characteristic of intra-amniotic inflammation and preterm birth. BJOG. 2009;116(2):257–267.

    Article  CAS  PubMed  Google Scholar 

  32. Redline RW, Faye-Petersen O, Heller D, et al. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003;6(5):435–448.

    Article  PubMed  Google Scholar 

  33. Normann E, Lacaze-Masmoπteil T, Eaton F, Schwendimann L, Gressens P, Thebaud B. A novel mouse model of Ureaplasma-induced perinatal inflammation: effects on lung and brain injury. PediatrRes. 2009;65(4):430–436.

    Google Scholar 

  34. Condon J, Yin S, Mayhew B, et al. Telomerase immortalization of human myometrial cells. Biol Reprod. 2002;67(2):506–514.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao J, Wu Y, Chen R, et al. Expression of Pcp4 gene during osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Mol Cell Biochem. 2008;309(1–2):143–150.

    Article  CAS  PubMed  Google Scholar 

  36. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250.

    Article  CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(—delta delta C(T)) method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  38. Cox C, Saxena N, Watt AP, et al. The common vaginal commensal bacterium Ureaplasma parvum is associated with chorioam-nionitis in extreme preterm labor. J Matern Fetal Neonatal Med. 2016;29(22):3646–3651.

    Article  PubMed  Google Scholar 

  39. Gerber S, Vial Y, Hohlfeld P, Witkin SS. Detection of Urea-plasma urealyticum in second-trimester amniotic fluid by polymerase chain reaction correlates with subsequent preterm labor and delivery. J Infect Dis. 2003;187(3):518–521.

    Article  PubMed  Google Scholar 

  40. Hillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988;319(15):972–978.

    Article  CAS  PubMed  Google Scholar 

  41. Knox CL, Cave DG, Farrell DJ, Eastment HT, Timms P. The role of Ureaplasma urealyticum in adverse pregnancy outcome. Aust NZ J Obstet Gynaecol. 1997;37(1):45–51.

    Article  CAS  Google Scholar 

  42. Namba F, Hasegawa T, Nakayama M, et al. Placental features of chorioamnionitis colonized with Ureaplasma species in preterm delivery. Pediatr Res. 2010;67(2):166–172.

    Article  PubMed  Google Scholar 

  43. Sweeney EL, Kallapur SG, Gisslen T, et al. Placental infection with ureaplasma species is associated with histologic chorioam-nionitis and adverse outcomes in moderately preterm and latepreterm infants. J Infect Dis. 2016;213(8):1340–1347.

    Article  PubMed  Google Scholar 

  44. Read CP, Word RA, Ruscheinsky MA, Timmons BC, Mahendroo MS. Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction. 2007;134(2):327–340.

    Article  CAS  PubMed  Google Scholar 

  45. Murr SM, Stabenfeldt GH, Bradford GE, Geschwind II. Plasma progesterone during pregnancy in the mouse. Endocrinology. 1974;94(4):1209–1211.

    Article  CAS  PubMed  Google Scholar 

  46. Soloff MS, Jeng YJ, Izban MG, et al. Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011;18(8):781–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang X, Putkey JA. PEP-19 modulates calcium binding to calmodulin by electrostatic steering. Nat Commun. 2016;7:13583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanborn BM. Ion channels and the control ofmyometrial electrical activity. Semin Perinatol. 1995;19(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  49. Sanborn BM. Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investig. 2000;7(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  50. Sanborn BM. Hormones and calcium: mechanisms controlling uterine smooth muscle contractile activity. The Litchfield Lecture. Exp Physiol. 2001;86(2):223–237.

    Article  CAS  PubMed  Google Scholar 

  51. Ku CY, Qian A, Wen Y, Anwer K, Sanborn BM. Oxytocin stimulates myometrial guanosine triphosphatase and phospholipase-C activities via coupling to G alpha q/11. Endocrinology. 1995;136(4):1509–1515.

    Article  CAS  PubMed  Google Scholar 

  52. McCullar JS, Larsen SA, Millimaki RA, Filtz TM. Calmodulin is a phospholipase C-beta interacting protein. J Biol Chem. 2003;278(36):33708–33713.

    Article  CAS  PubMed  Google Scholar 

  53. Taylor CW, Laude AJ. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium. 2002;32(5–6):321–334.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu MX. Multiple roles of calmodulin and other Ca(2+)-binding proteins in the functional regulation of TRP channels. Pflugers Arch. 2005;451(1):105–115.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr J. Condon (Wayne State University. Detroit, MI) for providing hTERT-HM cells and Dr H. Burkin (University of Nevada, Reno, NV, USA) for providing the PHUSMC-HTRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford W. Mason.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Lee, G.T., Zhou, H. et al. Expression, Regulation, and Function of the Calmodulin Accessory Protein PCP4/PEP-19 in Myometrium. Reprod. Sci. 26, 1650–1660 (2019). https://doi.org/10.1177/1933719119828072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719119828072

Keywords

Navigation