Skip to main content

Advertisement

Log in

Expression of Pcp4 gene during osteogenic differentiation of bone marrow mesenchymal stem cells in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we established an in vitro model of osteogenic-inductive differentiation of rat bone marrow mesenchymal stem cells (BMSCs) to determine the mechanisms and relative gene function underlying BMSCs osteogenesis. Osteoplastic differentiation of the third generation BMSCs was induced with the α-minimal essential medium containing β-glyceraldehyde-3-phosphate, l-ascorbic acid, dexamethasone and 1,25–2(OH)2 vitamin D3 prior to applying gene chip technology (also called microarray technology) for global gene expression screening. Real-time quantitative PCR (Real-time PCR) was used to determine the temporal profile of mRNA expression of regulated genes during osteogenic differentiation of BMSCs. A bioinformatic analysis was utilized to determine the functional significance of the identified osteogenic-related genes. Purkinje cell protein 4 (Pcp4) mRNA expression was identified by the gene chip screening as being up-regulated during osteoplastic differentiation of BMSCs. Real-time PCR analysis confirmed the increased expression of Pcp4 mRNA expression during osteoplastic differentiation of BMSCs with an upward trend that peaked at day 14. The bioinformatic analysis identified Pcp4 as a gene involved in the deposition of calcium and the modulation of CaM-dependent protein kinase. Thus, we hypothesize that Pcp4 osteoplastic differentiation of BMSCs is mediated in part via Pcp4-induced calcium deposition to form mineral nodules and modulation of certain signal transduction pathways of BMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caplan AI (2000) Tissue engineering designs for the future: new logics, old molecules. Tissue Eng 6:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    Article  PubMed  CAS  Google Scholar 

  3. Yoo JU, Johnstone B (2000) Mesenchymal stem cells and musculoskeletal repair. Cur Opin Orthop 11:391–396

    Article  Google Scholar 

  4. Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22:487–500

    Article  PubMed  Google Scholar 

  5. Lin Y, Liu L, Li Z, Qiao J, Wu L, Tang W, Zheng X, Chen X, Yan Z, Tian W (2006) Pluripotency potential of human adipose-derived stem cells marked with exogenous green fluorescent protein. Mol Cell Biochem 291:1–10

    Article  PubMed  CAS  Google Scholar 

  6. Kassem M, Kristiansen M, Abdallah B (2004) Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95:209–214

    Article  PubMed  CAS  Google Scholar 

  7. Pomerantz J, Blau HM (2004) Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biol 6:810–816

    Article  PubMed  CAS  Google Scholar 

  8. Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  PubMed  CAS  Google Scholar 

  9. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  PubMed  CAS  Google Scholar 

  10. Wu L, Wu Y, Lin Y, Jing W, Nie X, Qiao J, Liu L, Tang W, Tian W (2007) Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Mol Cell Biochem 301:83–92

    Article  PubMed  CAS  Google Scholar 

  11. Pola E, Gao W, Zhou Y, Pola R, Lattanzi W, Sfeir C, Gambotto A, Robbins PD (2004) Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther 11:683–693

    Article  PubMed  CAS  Google Scholar 

  12. Yue B, Lu B, Dai KR, Zhang XL, Yu CF, Lou JR, Tang TT (2005) BMP2 gene therapy on the repair of bone defects of aged rats. Calcif Tissue Int 77:395–403

    Article  PubMed  CAS  Google Scholar 

  13. Hu Z, Peel SA, Ho SK, Sándor GK, Clokie CM (2005) Role of bovine bone morphogenetic proteins in bone matrix protein and osteoblast-related gene expression during rat bone marrow stromal cell differentiation. J Craniofac Surg 16:1006–1014

    Article  PubMed  Google Scholar 

  14. Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC (2000) Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20:8783–8792

    Article  PubMed  CAS  Google Scholar 

  15. Kim HJ, Kim JH, Bae SC, Choi JY, Kim HJ, Ryoo HM (2003) The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J Biol Chem 278:319–326

    Article  PubMed  CAS  Google Scholar 

  16. Takamoto M, Tsuji K, Yamashita T, Sasaki H, Yano T, Taketani Y, Komori T, Nifuji A, Noda M (2003) Hedgehog signaling enhances core-binding factor a1 and receptor activator of nuclear factor-kappaB ligand (RANKL) gene expression in chondrocytes. J Endocrinol 177:413–421

    Article  PubMed  CAS  Google Scholar 

  17. Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfal. Endocr Rev 21:393–411

    Article  PubMed  CAS  Google Scholar 

  18. Bergwitz C, Prochnau A, Mayr B, Kramer FJ, Rittierodt M, Berten HL, Hausamen JE, Brabant G (2006) Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia. J Inherit Metab Dis 24:648–656

    Article  Google Scholar 

  19. Van LS, Rabie AB (2005) Mechanical strain induces Cbfa1 and type X collagen expression in mandibular condyle. Front Biosci 10:2966–2971

    Article  Google Scholar 

  20. Ducy P, Zhang R, Geoffroy V, Ridal AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  21. Rabie AB, Tang GH, Hagg U (2004) Cbfa1 couples chondrocytes maturation and endochondral ossification in rat mandibular condylar cartilage. Arch Oral Biol 49:109–118

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi H, Gao Y, Ueta C, Yamaguchi A, Komori T (2000) Multilineage differentiation of Cbfal-deficient calvarial cells in vitro. Biochem Biophys Res Commun 273:630–636

    Article  PubMed  CAS  Google Scholar 

  23. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  24. Liu L, Chen RL, Tian WD, Yan ZB, Chen XZ, Li SW, Wang T (2005) A study on the chondrogenesis of the compound of alginate gelatin and bone marrow stromal cells in vivo. Hua Xi Kou Qiang Yi Xue Za Zhi 23:60–62

    PubMed  Google Scholar 

  25. International guiding principles for animal research (1985) Geneva: council for International Organization of Medical Sciences

  26. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32:96–501

    Article  Google Scholar 

  27. Krex D, Schackert HK, Schackert G (2001) Genesis of cerebral aneurysms-an update. Acta Neurochir 143:429–448

    Article  CAS  Google Scholar 

  28. Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, Roth J (2004) Transcriptional profiling of IKK2/NF-κB– and p38 MAP kinase-dependent gene expression in TNF-α–stimulated primary human endothelial cells. Blood 103:3365–3373

    Article  PubMed  CAS  Google Scholar 

  29. Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER (2001) Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25:443–451

    Article  PubMed  CAS  Google Scholar 

  30. Liu W, Saint DA (2002) New quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302: 52–59

    Article  PubMed  CAS  Google Scholar 

  31. Simpson DA, Feeney S, Boyle C, Stitt AW (2000) Retinal VEGF mRNA measured by SYBR green I fluorescence: a versatile approach to quantitative PCR. Mol Vis 6:178–183

    PubMed  CAS  Google Scholar 

  32. Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P, McDonagh PD, Loerch PM, Leonardson A, Lum PY, Cavet G, Wu LF, Altschuler SJ, Edwards S, King J, Tsang JS, Schimmack G, Schelter JM, Koch J, Ziman M, Marton MJ, Li B, Cundiff P, Ward T, Castle J, Krolewski M, Meyer MR, Mao M, Burchard J, Kidd MJ, Dai H, Phillips JW, Linsley PS, Stoughton R, Scherer S, Boguski MS (2001) Experimental annotation of the human genome using microarray technology. Nature 409: 922–927

    Article  PubMed  CAS  Google Scholar 

  33. Abe A, Inoue K, Tanaka T, Kato J, Kajiyama N, Kawaguchi R, Tanaka S, Yoshiba M, Kohara M (1999) Quantitation of hepatitis B virus genomic DNA by real-time detection PCR. J Clin Microbiol 37:2899–2903

    PubMed  CAS  Google Scholar 

  34. Apple FS, Wu AH, Jaffe AS (2002) European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J 144:981–986

    Article  PubMed  Google Scholar 

  35. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  36. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401

    Article  PubMed  CAS  Google Scholar 

  37. Girard BM, May V, Bora SH, Fina F, Braas KM (2002) Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Pept 109:89–101

    Article  PubMed  CAS  Google Scholar 

  38. Chen H, Bouras C, Antonarakis SE (1996) Cloning of the cDNA for a human homolog of the rat PEP-19 gene and mapping to chromosome 21q22.2–q22.3. Hum Genet 98:672–677

    Article  PubMed  CAS  Google Scholar 

  39. Sala A, Scaturro M, Proia P, Schiera G, Balistreri E, Aflalo-Rattenbach R, Créau N, Di Liegro I (2007) Cloning of a rat-specific long PCP4/PEP19 isoform. Int J Mol Med 19:501–509

    PubMed  CAS  Google Scholar 

  40. Thomas S, Thiery E, Aflalo R, Vayssettes C, Verney C, Berthuy I, Creau N (2003) PCP4 is highly expressed in ectoderm and particularly in neuroectoderm derivatives during mouse embryogenesis. Gene Expr Patterns 3:93–97

    Article  PubMed  CAS  Google Scholar 

  41. Li MZ, Wang JS, Jiang DJ, Xiang CX, Wang FY, Zhang KH, Williams PR, Chen ZF (2006) Molecular mapping of developing dorsal horn-enriched genes by microarray and dorsal/ventral subtractive screening. Dev Biol 292:555–564

    Article  PubMed  CAS  Google Scholar 

  42. Murray KD, Choudary PV, Jones EG (2007) Nucleus- and cell-specific gene expression in monkey thalamus. Proc Natl Acad Sci USA 104:1989–1994

    Article  PubMed  CAS  Google Scholar 

  43. Iwamoto K, Bundo M, Yamamoto M, Ozawa H, Saito T, Kato T (2004) Decreased expression of NEFH and PCP4/PEP19 in the prefrontal cortex of alcoholics. Neurosci Res 49:379–385

    Article  PubMed  CAS  Google Scholar 

  44. Dickerson JB, Morgan MA, Mishra A, Slaughter CA, Morgan JI, Zheng J (2006) The influence of phosphorylation on the activity and structure of the neuronal IQ motif protein, PEP-19. Brain Res 1092:16–27

    Article  PubMed  CAS  Google Scholar 

  45. Slemmon JR, Feng B, Erhardt JA (2000) Small proteins that modulate calmodulin-dependent signal transduction: effects of PEP-19, neuromodulin, and neurogranin on enzyme activation and cellular homeostasis. Mol Neurobiol 22:99–113

    Article  PubMed  CAS  Google Scholar 

  46. Putkey JA, Kleerekoper Q, Gaertner TR, Waxham MN (2003) A new role for IQ motif proteins in regulating calmodulin function. J Biol Chem 278:49667–49670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Miss Xiaoyu Li for excellent technical support. This work was supported by the Chinese National Natural Science Foundation (30100210, 30572051) and the Outstanding Young Academic Leaders Foundation of Sichuan Province (06ZQ026–008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Tian or Lei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J., Wu, Y., Chen, R. et al. Expression of Pcp4 gene during osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Mol Cell Biochem 309, 143–150 (2008). https://doi.org/10.1007/s11010-007-9652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9652-x

Keywords

Navigation