Skip to main content

Advertisement

Log in

Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer: Importance of Targeting c-MET and HGF Interaction

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–804.

    Article  CAS  PubMed  Google Scholar 

  2. Appleman LJ. MET signaling pathway: a rational target for cancer therapy. J Clin Oncol. 2011;29(36):4837–4838.

    Article  CAS  PubMed  Google Scholar 

  3. Naldini L, Vigna E, Narsimhan RP, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene. 1991;6(4):501–504.

    CAS  PubMed  Google Scholar 

  4. Parr C, Jiang WG. Hepatocyte growth factor activators, inhibitors an antagonists and their implication in cancer intervention. Histol Histopathol. 2001;16(1):251–268.

    CAS  PubMed  Google Scholar 

  5. Miyazawa K, Shimomura T, Kitamura N. Activation of hepato-cyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J Biol Chem. 1996;271(7):3615–3618.

    Article  CAS  PubMed  Google Scholar 

  6. Miyazawa K. Hepatocyte growth factor activator (HGFA): a serine protease that links tissue injury to activation of hepatocyte growth factor. FEBS J. 2010;277(10):2208–2214.

    Article  CAS  PubMed  Google Scholar 

  7. Jin JS, Hsieh DS, Loh SH, Chen A, Yao CW, Yen CY. Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Modern Pathol. 2006;19(3):447–452.

    Article  CAS  Google Scholar 

  8. Oberst MD, Johnson MD, Dickson RB, et al. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res. 2002;8(4):1101–1107.

    CAS  PubMed  Google Scholar 

  9. Kataoka H, Miyata S, Uchinokura S, Itoh H. Roles of hepatocyte growth factor (HGF) activator and HGF activator inhibitor in the pericellular activation of HGF/scatter factor. Cancer Metastasis Rev. 2003;22(2-3):223-236.

    Google Scholar 

  10. Abdulla S. Hepatocyte growth factor, tissue repair and cancer. Mol Med Today. 1997;233(6):233.

    Article  Google Scholar 

  11. Bevan D, Gherardi E, Fan TP, Edwards D, Warn R. Diverse and potent activities of HGF/SF in skin wound repair. J Pathol. 2004;203(3):831–838.

    Article  CAS  PubMed  Google Scholar 

  12. Matsubara Y, Ichinose M, Yahagi N, et al. Hepatocyte growth factor activator: a possible regulator of morphogenesis during fetal development of the rat gastrointestinal tract. Biochem Biophys Res Commun. 1998;253(2):477–484.

    Article  CAS  PubMed  Google Scholar 

  13. Danilkovitch-Miagkova A, Zbar B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest. 2002;109(7):863–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li M, Xin X, Wu T, Hua T, Wang H. HGF and c-Met in pathogenesis of endometrial carcinoma. Front Biosci. 2015;20:635-643.

    Article  CAS  Google Scholar 

  15. Blumenschein GR Jr, Mills GB, Gonzalez-Angulo AM. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol. 2012;30(26):3287–3296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suarez-Causado A, Caballero-Diaz D, Bertran E, et al. HGF/ c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochimica et biophysica acta. 2015;1853(10 pt A): 2453–2463.

    Article  CAS  PubMed  Google Scholar 

  17. Usatyuk PV, Fu P, Mohan V, et al. Role of c-Met/phosphatidyli-nositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem. 2014;289(19):13476–13491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smolen GA, Sordella R, Muir B, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci USA. 2006;103(7):2316–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M, Xin X, Wu T, Hua T, Wang H, Wang H. Stromal cells of endometrial carcinoma promotes proliferation of epithelial cells through the HGF/c-Met/Akt signaling pathway. Tumour Biol. 2015;36(8):6239–6248.

    Article  CAS  PubMed  Google Scholar 

  20. Jahangiri A, De Lay M, Miller LM, et al. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of anti-angiogenic therapy resistance. Clin Cancer Res. 2013;19(7):1773–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods an major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386.

    Article  CAS  PubMed  Google Scholar 

  22. Colombo N, Peiretti M, Garbi A, et al. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment an follow-up. Ann Oncol. 2012;23(suppl 7):vii20–vii26.

    Article  PubMed  Google Scholar 

  23. Ahmed AA, Becker CM, Bast R. Jr. The origin of ovarian cancer. BJOG. 2012;119(2):134–136.

    Article  CAS  PubMed  Google Scholar 

  24. Kurman RJ. Origin and molecular pathogenesis of ovarian highgrade serous carcinoma. Ann Oncol. 2013;24(suppl 10):x16–x21.

    Article  PubMed  Google Scholar 

  25. Yang-Hartwich Y, Gurrea-Soteras M, Sumi N, et al. Ovulation and extra-ovarian origin of ovarian cancer. Sci Rep. 2014;4:6116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurman RJ, Shih I. M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Hum Pathol. 2011;42(7):918–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–1064.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cho KR, Shih I. M. Ovarian cancer. Ann Rev Pathol. 2009;4: 287–313.

    Article  CAS  Google Scholar 

  29. Prat J. New insights into ovarian cancer pathology. Ann Oncol. 2012;23(suppl 10):x111–x117.

    Article  PubMed  Google Scholar 

  30. La Vecchia C. Ovarian cancer: epidemiology and risk factors. Eur J Cancer Prev. 2017;26(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  31. Ayhan A, Ertunc D, Tok EC, Ayhan A. Expression of the c-Met in advanced epithelial ovarian cancer and its prognostic significance. Int J Gynecol Cancer. 2005;15(4):618–623.

    Article  CAS  PubMed  Google Scholar 

  32. Di Renzo MF, Olivero M, Katsaros D, et al. Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer. 1994;58(5):658–662.

    Article  PubMed  Google Scholar 

  33. Kwon Y, Smith BD, Zhou Y, Kaufman MD, Godwin AK. Effective inhibition of c-MET-mediated signaling, growth an migration of ovarian cancer cells is influenced by the ovarian tissue microenvironment. Oncogene. 2015;34(2):144–153.

    Article  CAS  PubMed  Google Scholar 

  34. Mhawech-Fauceglia P, Afkhami M, Pejovic T. MET/HGF signaling pathway in ovarian carcinoma: clinical implications and future direction. Pathol Res Int. 2012;2012:960327.

    Article  Google Scholar 

  35. Sawada K, Radjabi AR, Shinomiya N, et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res. 2007;67(4):1670–1679.

    Article  CAS  PubMed  Google Scholar 

  36. Canipari R, O’Connell ML, Meyer G, Strickland S. Mouse ovarian granulosa cells produce urokinase-type plasminogen activator, whereas the corresponding rat cells produce tissue-type plasminogen activator. J Cell Biol. 1987;105(2):977–981.

    Article  CAS  PubMed  Google Scholar 

  37. Osuga Y, Tsutsumi O, Momoeda M, et al. Evidence for the presence of hepatocyte growth factor expression in human ovarian follicles. Mol Hum Reprod. 1999;5(8):703–707.

    Article  CAS  PubMed  Google Scholar 

  38. Parrott JA, Skinner MK. Developmental and hormonal regulation of hepatocyte growth factor expression and action in the bovine ovarian follicle. Biol Reprod. 1998;59(3):553–560.

    Article  CAS  PubMed  Google Scholar 

  39. Parrott JA, Skinner MK. Expression and action of hepatocyte growth factor in human and bovine normal ovarian surface epithelium and ovarian cancer. Biol Reprod. 2000;62(3):491–500.

    Article  CAS  PubMed  Google Scholar 

  40. Uzumcu M, Pan Z, Chu Y, Kuhn PE, Zachow R. Immunolocalization of the hepatocyte growth factor (HGF) system in the rat ovary and the anti-apoptotic effect of HGF in rat ovarian granulosa cells in vitro. Reproduction. 2006;132(2):291–299.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Lin L, Zarnegar R. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary. Mol Cell Endocri-nol. 1994;104(2):173–181.

    Article  CAS  Google Scholar 

  42. Taniguchi F, Harada T, Deura I, Iwabe T, Tsukihara S, Terakawa N. Hepatocyte growth factor promotes cell proliferation and inhibits progesterone secretion via PKA and MAPK pathways in a human granulosa cell line. Mol Reprod Dev. 2004;68(3):335–344.

    Article  CAS  PubMed  Google Scholar 

  43. Zachow RJ, Ramski BE, Lee H. Modulation of estrogen production and 17beta-hydroxysteroid dehydrogenase-type 1, cyto-chrome P450 aromatase, c-met, and protein kinase Balpha messenger ribonucleic acid content in rat ovarian granulosa cells by hepatocyte growth factor and follicle-stimulating hormone. Biol Reprod. 2000;62(6):1851–1857.

    Article  CAS  PubMed  Google Scholar 

  44. Wong AS, Pelech SL, Woo MM, et al. Coexpression of hepato-cyte growth factor-Met: an early step in ovarian carcinogenesis? Oncogene. 2001;20(11):1318–1328.

    Article  CAS  PubMed  Google Scholar 

  45. Murdoch WJ, McDonnel AC. Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction. 2002;123(6):743–750.

    Article  CAS  PubMed  Google Scholar 

  46. Murdoch WJ, Murphy CJ, Van Kirk EA, Shen Y. Mechanisms and pathobiology of ovulation. Soc Reprod Fertil Suppl. 2010;67: 189–201.

    CAS  PubMed  Google Scholar 

  47. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev. 2001;22(2):255–288.

    CAS  PubMed  Google Scholar 

  48. Kwon Y, Cukierman E, Godwin AK. Differential expressions of adhesive molecules and proteases define mechanisms of ovarian tumor cell matrix penetration/invasion. PloS One. 2011;6(4): e18872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bjersing L, Cajander S. Ovulation and the role of the ovarian surface epithelium. Experientia. 1975;31(5):605–608.

    Article  CAS  PubMed  Google Scholar 

  50. Clow OL, Hurst PR, Fleming JS. Changes in the mouse ovarian surface epithelium with age and ovulation number. Mol Cell Endocrinol. 2002;191(1):105–111.

    Article  CAS  PubMed  Google Scholar 

  51. Singavarapu R, Buchinsky N, Cheon DJ, Orsulic S. Whole ovary immunohistochemistry for monitoring cell proliferation and ovula-tory wound repair in the mouse. Reprod Biol Endocrinol. 2010;8:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tan OL, Fleming JS. Proliferating cell nuclear antigen immunoreactivity in the ovarian surface epithelium of mice of varying ages and total lifetime ovulation number following ovulation. Biol Reprod. 2004;71(5):1501–1507.

    Article  CAS  PubMed  Google Scholar 

  53. Parrott JA, Vigne JL, Chu BZ, Skinner MK. Mesenchymal-epithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells. Endocrinology. 1994;135(2):569–575.

    Article  CAS  PubMed  Google Scholar 

  54. Gubbay O, Guo W, Rae MT, et al. Anti-inflammatory and pro-liferative responses in human and ovine ovarian surface epithelial cells. Reproduction. 2004;128(5):607–614.

    Article  CAS  PubMed  Google Scholar 

  55. Hess S, Gulati R, Peluso JJ. Hepatocyte growth factor induces rat ovarian surface epithelial cell mitosis or apoptosis depending on the presence or absence of an extracellular matrix. Endocrinology. 1999;140(6):2908–2916.

    Article  CAS  PubMed  Google Scholar 

  56. Zioncheck TF, Richardson L, Liu J, et al. Sulfated oligosacchar-ides promote hepatocyte growth factor association and govern its mitogenic activity. J Biol Chem. 1995;270(28):16871–16878.

    Article  CAS  PubMed  Google Scholar 

  57. Miyazawa K, Shimomura T, Naka D, Kitamura N. Proteolytic activation of hepatocyte growth factor in response to tissue injury. J Biol Chem. 1994;269(12):8966–8970.

    CAS  PubMed  Google Scholar 

  58. Zachow R, Uzumcu M. The hepatocyte growth factor system as a regulator of female and male gonadal function. J Endocrinol. 2007;195(3):359–371.

    Article  CAS  PubMed  Google Scholar 

  59. Sisson TH, Nguyen MH, Yu B, Novak ML, Simon RH, Koh TJ. Urokinase-type plasminogen activator increases hepatocyte growth factor activity required for skeletal muscle regeneration. Blood. 2009;114(24):5052–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsuoka H, Sisson TH, Nishiuma T, Simon RH. Plasminogen-mediated activation and release of hepatocyte growth factor from extracellular matrix. Am J Respir Cell Mol Biol. 2006;35(6):705–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bu R, Uddin S, Bavi P, et al. HGF/c-Met pathway has a prominent role in mediating antiapoptotic signals through AKT in epithelial ovarian carcinoma. Lab Invest. 2011;91(1):124–137.

    Article  CAS  PubMed  Google Scholar 

  62. Huntsman D, Resau JH, Klineberg E, Auersperg N. Comparison of c-met expression in ovarian epithelial tumors and normal epithelia of the female reproductive tract by quantitative laser scan microscopy. Am J Pathol. 1999;155(2):343–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sierra JR, Tsao MS. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3(1 suppl): S21–S35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–615.

    Article  CAS  Google Scholar 

  65. Muller PA, Trinidad AG, Timpson P, et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene. 2013;32(10):1252–1265.

    Article  CAS  PubMed  Google Scholar 

  66. Tanimoto H, Yan Y, Clarke J, et al. Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer. Cancer Res. 1997;57(14):2884–2887.

    CAS  PubMed  Google Scholar 

  67. Mazar AP, Ahn RW, O’Halloran TV. Development of novel therapeutics targeting the urokinase plasminogen activator receptor (uPAR) and their translation toward the clinic. Curr Pharm Design. 2011;17(19):1970–1978.

    Article  CAS  Google Scholar 

  68. Kuhn W, Pache L, Schmalfeldt B, et al. Urokinase (uPA) and PAI-1 predict survival in advanced ovarian cancer patients (FIGO III) after radical surgery and platinum-based chemotherapy. Gynecol Oncol. 1994;55(3 pt 1):401–409.

    Article  CAS  PubMed  Google Scholar 

  69. Ueoka Y, Kato K, Kuriaki Y, et al. Hepatocyte growth factor modulates motility and invasiveness of ovarian carcinomas via Ras-mediated pathway. Br J Cancer. 2000;82(4):891–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hudson LG, Zeineldin R, Stack MS. Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis. 2008;25(6):643–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ahmed N, Thompson EW, Quinn MA. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol. 2007;213(3):581–588.

    Article  CAS  PubMed  Google Scholar 

  72. Auersperg N, Pan J, Grove BD, et al. E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci USA. 1999;96(11):6249–6254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sundfeldt K, Piontkewitz Y, Ivarsson K, et al. E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int J Cancer. 1997;74(3):275–280.

    Article  CAS  PubMed  Google Scholar 

  74. Michieli P, Basilico C, Pennacchietti S, et al. Mutant Metmediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene. 1999;18(37):5221–5231.

    Article  CAS  PubMed  Google Scholar 

  75. Aune G, Lian AM, Tingulstad S, et al. Increased circulating hepatocyte growth factor (HGF): a marker of epithelial ovarian cancer and an indicator of poor prognosis. Gynecol Oncol. 2011;121(2):402–406.

    Article  CAS  PubMed  Google Scholar 

  76. Sowter HM, Corps AN, Smith SK. Hepatocyte growth factor (HGF) in ovarian epithelial tumour fluids stimulates the migration of ovarian carcinoma cells. Int J Cancer. 1999;83(4):476–480.

    Article  CAS  PubMed  Google Scholar 

  77. Aguirre Ghiso JA, Alonso DF, Farias EF, Gomez DE, de Kier Joffe EB. Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur J Biochem. 1999;263(2):295–304.

    CAS  PubMed  Google Scholar 

  78. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 1997;91(4):439–442.

    Article  CAS  PubMed  Google Scholar 

  79. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 suppl):S7–S19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tang MK, Zhou HY, Yam JW, Wong AS. c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphati-dylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia. 2010;12(2):128–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zillhardt M, Christensen JG, Lengyel E. An orally available small-molecule inhibitor of c-Met, PF-2341066, reduces tumor burden and metastasis in a preclinical model of ovarian cancer metastasis. Neoplasia. 2010;12(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zillhardt M, Park SM, Romero IL, et al. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin Cancer Res. 2011;17(12):4042–4051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjoo Kwon PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y., Godwin, A.K. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer: Importance of Targeting c-MET and HGF Interaction. Reprod. Sci. 24, 494–501 (2017). https://doi.org/10.1177/1933719116648212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116648212

Keywords

Navigation