Skip to main content

Advertisement

Log in

Epigallocatechin-3-Gallate Reduces Myometrial Infiltration, Uterine Hyperactivity, and Stress Levels and Alleviates Generalized Hyperalgesia in Mice Induced With Adenomyosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In an effort to search for novel therapeutics for adenomyosis, we sought to determine whether treatment with epigallocatechin-3-gallate (EGCG) would suppress the myometrial infiltration, improve pain behavior, lower stress level, and reduce uterine contractility in a mice model of adenomyosis. Adenomyosis was induced in 28 female ICR mice neonatally dosed with tamoxifen, while another 12 (group C) were dosed with solvent only, which served as a blank control. Starting from 4 weeks after birth, hot plate test was administrated to all mice every 4 weeks. At the 16th week, all mice induced with adenomyosis were randomly divided into 3 groups: low-dose EGCG (5 mg/kg), high-dose EGCG (50 mg/kg), and untreated. Group C received no treatment. After 3 weeks of treatment, the hot plate test was administered again, a blood sample was taken to measure the plasma corticosterone level by enzyme-linked immunosorbent assay, and then all mice were sacrificed. The depth of myometrial infiltration and uterine contractility were also evaluated. We found that the induction of adenomyosis resulted in progressive generalized hyperalgesia, along with elevated amplitude and frequency of uterine contractions as well as elevated plasma corticosterone levels. The EGCG treatment dose dependently suppressed myometrial infiltration, improved generalized hyperalgesia, reduced uterine contractility, and lowered plasma corticosterone levels. These results suggest that induced adenomyosis causes pain and elevates stress levels in mice. Uterine hyperactivity may contribute to dysmenorrhea in women with adenomyosis who might also have elevated stress level due to pain. The EGCG appears to be a promising compound for treating adenomyosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang CS, Maliakal P, Meng X. Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol. 2002;42:25–54.

    Article  CAS  PubMed  Google Scholar 

  2. Yang CS, Lambert JD, Ju J, Lu G, Sang S. Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol. 2007;224(3):265–273.

    Article  CAS  PubMed  Google Scholar 

  3. Cao Y, Cao R. Angiogenesis inhibited by drinking tea. Nature. 1999;398(6726):381.

    Article  CAS  PubMed  Google Scholar 

  4. Laschke MW, Schwender C, Scheuer C, Vollmar B, Menger MD. Epigallocatechin-3-gallate inhibits estrogen-induced activation of endometrial cells in vitro and causes regression of endometriotic lesions in vivo. Hum Reprod. 2008;23(10):2308–2318.

    Article  CAS  PubMed  Google Scholar 

  5. Xu H, Lui WT, Chu CY, Ng PS, Wang CC, Rogers MS. Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Hum Reprod. 2009;24(3):608–618.

    Article  CAS  PubMed  Google Scholar 

  6. Xu H, Becker CM, Lui WT, et al. Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. Fertil Steril. 2011;96(4):1021–1028.

    Article  CAS  PubMed  Google Scholar 

  7. Ricci AG, Olivares CN, Bilotas MA, et al. Natural therapies assessment for the treatment of endometriosis. Hum Reprod. 2013;28(1):178–188.

    Article  CAS  PubMed  Google Scholar 

  8. Bergeron C, Amant F, Ferenczy A. Pathology and physiopathology of adenomyosis. Best Pract Res Clin Obstet Gynaecol. 2006;20(4):511–521.

    Article  PubMed  Google Scholar 

  9. Mao X, Wang Y, Carter AV, Zhen X, Guo SW. The retardation of myometrial infiltration, reduction of uterine contractility, and alleviation of generalized hyperalgesia in mice with induced adenomyosis by levo-tetrahydropalmatine (1-THP) and andrographolide. Reprod Sci. 2011;18(10):1025–1037.

    Article  CAS  PubMed  Google Scholar 

  10. Wood C. Adenomyosis: difficult to diagnose, and difficult to treat. Diagn Ther Endosc. 2001;7(2):89–95.

    Article  CAS  Google Scholar 

  11. Green AR, Styles JA, Parrott EL, et al. Neonatal tamoxifen treatment of mice leads to adenomyosis but not uterine cancer. Exp Toxicol Pathol. 2005;56(4–5):255–263.

    Article  CAS  PubMed  Google Scholar 

  12. Parrott E, Butterworth M, Green A, White IN, Greaves P. Adenomyosis—a result of disordered stromal differentiation. Am J Pathol. 2001;159(2):623–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu X, Guo SW. Valproic acid alleviates generalized hyperalgesia in mice with induced adenomyosis. J Obstet Gynaecol Res. 2011; 37(7):696–708.

    Article  CAS  PubMed  Google Scholar 

  14. He W, Liu X, Zhang Y, Guo SW. Generalized hyperalgesia in women with endometriosis and its resolution following a successful surgery. Reprod Sci. 2010;17(12):1099–1111.

    Article  PubMed  Google Scholar 

  15. Chapman CR, Tuckett RP, Song CW. Pain and stress in a systems perspective: reciprocal neural, endocrine, and immune interactions. J Pain. 2008;9(2):122–145.

    Article  PubMed  Google Scholar 

  16. Jichan N, Xishi L, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent. Reprod Sci. 2010;17(11):995–1005.

    Article  CAS  Google Scholar 

  17. Liu X, Guo SW. Aberrant immunoreactivity of deoxyribonucleic acid methyltransferases in adenomyosis. Gynecol Obstet Invest. 2012;74(2):100–108.

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Nie J, Guo SW. Elevated immunoreactivity against class I histone deacetylases in adenomyosis. Gynecol Obstet Invest. 2012;74(1):50–55.

    Article  CAS  PubMed  Google Scholar 

  19. Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003; 63(22):7563–7570.

    CAS  PubMed  Google Scholar 

  20. Nandakumar V, Vaid M, Katiyar SK. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis. 2011;32(4):537–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adachi N, Tomonaga S, Tachibana T, Denbow DM, Furuse M. (-)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur J Pharmacol. 2006; 531(1–3):171–175.

    Article  CAS  PubMed  Google Scholar 

  22. Shen JZ, Zheng XF, Wei EQ, Kwan CY. Green tea catechins evoke a phasic contraction in rat aorta via H202-mediated multiple-signalling pathways. Clin Exp Pharmacol Physiol. 2003;30(1–2):88–95.

    Article  CAS  PubMed  Google Scholar 

  23. Council NR, ed. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press; 1996.

    Google Scholar 

  24. Bird CC, McElin TW, Manalo-Estrella P. The elusive adenomyosis of the uterus—revisited. Am J Obstet Gynecol. 1972;112(5):583–593.

    Article  CAS  PubMed  Google Scholar 

  25. Wang HW, Wu CC. Effects of oxymetazoline on isolated rat’s tracheal smooth muscle. Eur Arch Otorhinolaryngol. 2008; 265(6):695–698.

    Article  PubMed  Google Scholar 

  26. Calixto JB, Yunes RA. Antagonism of kinin-induced contraction of isolated rat uterus by the crude hydroalcoholic extract from Mandevilla illustris. Gen Pharmacol. 1991;22(1):99–101.

    Article  CAS  PubMed  Google Scholar 

  27. Hernandez-Magro PM, Villanueva Saenz E, Alvarez-Tostado Fernandez F, Luis Rocha Ramirez J, Valdes Ovalle M. Endoanal sonography in the assessment of perianal endometriosis with external anal sphincter involvement. J Clin Ultrasound. 2002; 30(4):245–248.

    Article  PubMed  Google Scholar 

  28. Liu X, Guo SW. Dysmenorrhea: risk factors in women with endometriosis, Womens Health (Lond Engl). 2008;4(4):399–411.

    Article  Google Scholar 

  29. Team RDC. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2009.

    Google Scholar 

  30. Denny E. I never know from one day to another how I will feel: pain and uncertainty in women with endometriosis. Qual Health Res. 2009;19(7):985–995.

    Article  PubMed  Google Scholar 

  31. Fourquet J, Gao X, Zavala D, et al. Patients’ report on how endometriosis affects health, work, and daily life. Fertil Steril. 2010;93(7):2424–2428.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barnack JL, Chrisler JC. The experience of chronic illness in women: a comparison between women with endometriosis and women with chronic migraine headaches. Women Health. 2007; 46(1):115–133.

    Article  PubMed  Google Scholar 

  33. Lima AP, Moura MD, Rosa e Silva AA. Prolactin and cortisol levels in women with endometriosis. Braz J Med Biol Res. 2006;39(8):1121–1127.

    Article  CAS  PubMed  Google Scholar 

  34. Petrelluzzi KF, Garcia MC, Petta CA, Grassi-Kassisse DM, Spadari-Bratfisch RC. Salivary cortisol concentrations, stress and quality of life in women with endometriosis and chronic pelvic pain. Stress. 2008;11(5):390–397.

    Article  CAS  PubMed  Google Scholar 

  35. Benedetti M, Merino R, Kusuda R, et al. Plasma corticosterone levels in mouse models of pain. Eur J Pain. 2012;16(6):803–815.

    Article  CAS  PubMed  Google Scholar 

  36. Kempuraj D, Papadopoulou N, Stanford EJ, et al. Increased numbers of activated mast cells in endometriosis lesions positive for corticotropin-releasing hormone and urocortin. Am J Reprod Immunol. 2004;52(4):267–275.

    Article  PubMed  Google Scholar 

  37. Monsivais D, Bray JD, Su E, et al. Activated glucocorticoid and eicosanoid pathways in endometriosis. Fertil Steril. 2012;98(1): 117–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Otake T, Ashihara M, Nishino J, Kato K, Fukaya S, Yoshida S. Stressors and rheumatoid arthritis: changes in stressors with advances in therapeutic agents. Rheumatol Int. 2013;33(4):887–891.

    Article  PubMed  Google Scholar 

  39. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992;267(9):1244–1252.

    Article  CAS  PubMed  Google Scholar 

  40. Sapolsky RM. A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J Neurosci. 1985;5(5):1228–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10(9):2897–2902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–475.

    Article  PubMed  CAS  Google Scholar 

  43. Mutso AA, Radzicki D, Baliki MN, et al. Abnormalities in hippocampal functioning with persistent pain. J Neurosci. 2012; 32(17):5747–5756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frank MG, Miguel ZD, Watkins LR, Maier SF. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun. 2010;24(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  45. Alexander JK, DeVries AC, Kigerl KA, Dahlman JM, Popovich PG. Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain Behav Immun. 2009;23(6): 851–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Imbe H, Iwai-Liao Y, Senba E. Stress-induced hyperalgesia: animal models and putative mechanisms. Front Biosci. 2006;11: 2179–2192.

    Article  CAS  PubMed  Google Scholar 

  47. Cuevas M, Flores I, Thompson KJ, Ramos-Ortolaza DL, Torres-Reveron A, Appleyard CB. Stress exacerbates endometriosis manifestations and inflammatory parameters in an animal model. Reprod Sci. 2012;19(8):851–862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eskandari F, Webster JI, Sternberg EM. Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther. 2003;5(6):251–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo SW, Mao X, Ma Q, Liu X. Dysmenorrhea and its severity are associated with increased uterine contractility and overexpression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil Steril. 2013;99(1):231–240.

    Article  CAS  PubMed  Google Scholar 

  50. Kunz G, Noe M, Herbertz M, Leyendecker G. Uterine peristalsis during the follicular phase of the menstrual cycle: effects of oestrogen, antioestrogen and oxytocin. Hum Reprod Update. 1998; 4(5):647–654.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Lu B, Huang X, Xu H, Zhou C, Lin J. Innervation of endometrium and myometrium in women with painful adenomyosis and uterine fibroids. Fertil Steril. 2010;94(2): 730–737.

    Article  PubMed  Google Scholar 

  52. Wilson T, Liggins GC, Whittaker DJ. Oxytocin stimulates the release of arachidonic acid and prostaglandin F2 alpha from human decidual cells. Prostaglandins. 1988;35(5):771–780.

    Article  CAS  PubMed  Google Scholar 

  53. Burns PD, Mendes JO Jr, Yemm RS, et al. Cellular mechanisms by which oxytocin mediates ovine endometrial prostaglandin F2alpha synthesis: role of G(i) proteins and mitogen-activated protein kinases. Biol Reprod. 2001;65(4):1150–1155.

    Article  CAS  PubMed  Google Scholar 

  54. Sales KJ, Jabbour HN. Cyclooxygenase enzymes and prostaglandins in pathology of the endometrium. Reproduction. 2003; 126(5):559–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sales KJ, Grant V, Jabbour HN. Prostaglandin E2 and F2alpha activate the FP receptor and up-regulate cyclooxygenase-2 expression via the cyclic AMP response element. Mol Cell Endocrinol. 2008;285(1–2):51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nie J, Liu X, Guo SW. Immunoreactivity of oxytocin receptor and transient receptor potential vanilloid type 1 and its correlation with dysmenorrhea in adenomyosis. Am J Obstet Gynecol. 2010;202:346. e341–e348

    Google Scholar 

  57. Mehasseb MK, Bell SC, Pringle JH, Habiba MA. Uterine adenomyosis is associated with ultrastructural features of altered contractility in the inner myometrium. Fertil Steril. 2010;93(7): 2130–2136.

    Article  PubMed  Google Scholar 

  58. Mechsner S, Grum B, Gericke C, Loddenkemper C, Dudenhausen JW, Ebert AD. Possible roles of oxytocin receptor and vasopressin-1alpha receptor in the pathomechanism of dysperistalsis and dysmenorrhea in patients with adenomyosis uteri. Fertil Steril. 2010;94(7):2541–2546.

    Article  CAS  PubMed  Google Scholar 

  59. Nie J, Lu Y, Liu X, Guo SW. Immunoreactivity of progesterone receptor isoform B, nuclear factor kappaB, and IkappaBalpha in adenomyosis. Fertil Steril. 2009;92(3):886–889.

    Article  PubMed  CAS  Google Scholar 

  60. Guo SW. Methodological issues in preclinical mouse efficacy studies of adenomyosis. Current Obstet Gynecol Rep. 2012;1(3): 138–145.

    Article  Google Scholar 

  61. Chen Z, Zhu QY, Tsang D, Huang Y. Degradation of green tea catechins in tea drinks. J Agric Food Chem. 2001;49(1):477–482.

    Article  CAS  PubMed  Google Scholar 

  62. Wang CC, Xu H, Man GC, et al. Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogene sis agent for endometriosis in mice. Angiogenesis. 2013;16(1):59–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Wei Guo PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zhu, B., Zhang, H. et al. Epigallocatechin-3-Gallate Reduces Myometrial Infiltration, Uterine Hyperactivity, and Stress Levels and Alleviates Generalized Hyperalgesia in Mice Induced With Adenomyosis. Reprod. Sci. 20, 1478–1491 (2013). https://doi.org/10.1177/1933719113488455

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113488455

Keywords

Navigation