Skip to main content

Advertisement

Log in

l-Methionine Placental Uptake: Characterization and Modulation in Gestational Diabetes Mellitus

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Our aim was to investigate the influence of gestational diabetes mellitus (GDM) and GDM-associated conditions upon the placental uptake of 14C-l-methionine (14C-l-Met). The 14C-l-Met uptake by human trophoblasts (TBs) obtained from normal pregnancies (normal trophoblast [NTB] cells) is mainly system l-type amino acid transporter 1 (LAT1 [L])-mediated, although a small contribution of system y+LAT2 is also present. Comparison of 14C-l-Met uptake by NTB and by human TBs obtained from GDM pregnancies (diabetic trophoblast [DTB] cells) reveals similar kinetics, but a contribution of systems A, LAT2, and b0+ and a greater contribution of system y+LAT1 appears to exist in DTB cells. Short-term exposure to insulin and long-term exposure to high glucose, tumor necrosis factor-α, and leptin decrease 14C-l-Met uptake in a human TB (Bewo) cell line. The effect of leptin was dependent upon phosphoinositide 3-kinase, extracellular-signal-regulated kinase 1/2 (ERK/MEK 1/2), and p38 mitogen-activated protein kinase. In conclusion, GDM does not quantitatively alter 14C-l-Met placental uptake, although it changes the nature of transporters involved in that process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fowden AL, Forhead AJ, Coan PM, Burton GJ. The placenta and intrauterine programming. J Neuroendocrinal. 2008;20(4):439–450.

    Article  CAS  PubMed  Google Scholar 

  2. Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T. Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab. 2003;88(3):1205–1211.

    Article  CAS  PubMed  Google Scholar 

  3. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond). 2007;113(1):1–13.

    Article  CAS  Google Scholar 

  4. Shoob HD, Sargent RG, Thompson SJ, Best RG, Drane JW, Tocharoen A. Dietary methionine is involved in the etiology of neural tube defect-affected pregnancies in humans. J Nutr. 2001;131(10):2653–2658.

    Article  CAS  PubMed  Google Scholar 

  5. Grillo MA, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids. 2008;34(4): 517–523.

    Article  CAS  PubMed  Google Scholar 

  6. Cleal JK, Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinal. 2008;20(4):419–426.

    Article  CAS  PubMed  Google Scholar 

  7. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34(suppl 1):S62–S69.

    Article  PubMed Central  CAS  Google Scholar 

  8. Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy—are these the cause of the problem? Best Pract Res Clin Endocrinol Metab. 2010;24(4):515–525.

    Article  CAS  PubMed  Google Scholar 

  9. Catalano PM. Obesity, insulin resistance, and pregnancy outcome. Reproduction. 2010;140(3):365–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19): 1991–2002.

    Article  PubMed  Google Scholar 

  11. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3): e290–e296.

    Article  PubMed  Google Scholar 

  12. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352(24):2477–2486.

    Article  CAS  PubMed  Google Scholar 

  13. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299(3): R711–R722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mato JM, Martinez-Chantar ML, Lu SC. Methionine metabolism and liver disease. Annu Rev Nutr. 2008;28:273–293.

    Article  CAS  PubMed  Google Scholar 

  15. Jansson T, Cetin I, Powell TL, et al. Placental transport and metabolism in fetal overgrowth—a workshop report. Placenta. 2006; 27(suppl A):S109–S113.

    Article  PubMed  Google Scholar 

  16. Dicke JM, Henderson GI. Placental amino acid uptake in normal and complicated pregnancies. Am J Med Sci. 1988;295(3): 223–227.

    Article  CAS  PubMed  Google Scholar 

  17. Nandakumaran M, Al-Shammari M, Al-Saleh E. Maternal-fetal transport kinetics of L-Leucine in vitro in gestational diabetic pregnancies. Diabetes Metab. 2004;30(4):367–374.

    Article  CAS  PubMed  Google Scholar 

  18. Kuruvilla AG, D’Souza SW, Glazier JD, Mahendran D, Maresh MJ, Sibley CP. Altered activity of the system A amino acid transporter in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women. J Clin Invest. 1994;94(2):689–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jansson T, Ekstrand Y, Bjorn C, Wennergren M, Powell TL. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes. 2002;51(7): 2214–2219.

    Article  CAS  PubMed  Google Scholar 

  20. Tsitsiou E, Sibley CP, D’Souza SW, Catanescu O, Jacobsen DW, Glazier JD. Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta. J Physiol. 2009;587(pt 16):4001–4013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kudo Y, Boyd CA. Characterization of amino acid transport systems in human placental basal membrane vesicles. Biochim Biophys Acta. 1990;1021(2):169–174.

    Article  CAS  PubMed  Google Scholar 

  22. Keating E, Goncalves P, Lemos C, et al. Progesterone inhibits folic acid transport in human trophoblasts. J Membr Biol. 2007; 216(2–3):143–152.

    Article  CAS  PubMed  Google Scholar 

  23. Sastry BV. Techniques to study human placental transport. Adv Drug Deliv Rev. 1999;38(1):17–39.

    Article  CAS  PubMed  Google Scholar 

  24. Carpenter MW, Coustan DR. Criteria for screening tests for gestational diabetes. Am J Obstet Gynecol. 1982;144(7):768–773.

    Article  CAS  PubMed  Google Scholar 

  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72(1–2):248–254.

    Article  CAS  PubMed  Google Scholar 

  26. von Versen-Hoynck F, Rajakumar A, Parrott MS, Powers RW. Leptin affects system A amino acid transport activity in the human placenta: evidence for STAT3 dependent mechanisms. Placenta. 2009;30(4):361–367.

    Article  CAS  Google Scholar 

  27. Eaton BM, Sooranna SR. Transport of large neutral amino acids into BeWo cells. Placenta. 2000;21(5–6):558–564.

    Article  CAS  PubMed  Google Scholar 

  28. Non-linear regression (curve fit). GraphPad Prism for Windows [computer program]. San Diego, CA: GraphPad Inc; 2005.

    Google Scholar 

  29. ADA. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(suppl 1):S67–S74.

    Google Scholar 

  30. Anger GJ, Cressman AM, Piquette-Miller M. Expression of ABC efflux transporters in placenta from women with insulin-managed diabetes. PLoS One. 2012;7(4):e35027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamamoto A, Akanuma S, Tachikawa M, Hosoya K. Involvement of LAT1 and LAT2 in the high- and low-affinity transport of L-leucine in human retinal pigment epithelial cells (ARPE-19 cells). J Pharm Sci. 2010;99(5):2475–2482.

    Article  CAS  PubMed  Google Scholar 

  32. Wagner CA, Lang F, Broer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol. 2001; 281(4): C1077–C1093.

    Article  CAS  PubMed  Google Scholar 

  33. Ayuk PT, Sibley CP, Donnai P, D’Souza S, Glazier JD. Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol Cell Physiol. 2000; 278(6):C1162–C1171.

    Article  CAS  PubMed  Google Scholar 

  34. Jones HN, Jansson T, Powell TL. Full-length adiponectin attenuates insulin signaling and inhibits insulin-stimulated amino Acid transport in human primary trophoblast cells. Diabetes. 2010; 59(5):1161–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kautzky-Willer A, Pacini G, Tura A, et al. Increased plasma leptin in gestational diabetes. Diabetologia. 2001;44(2):164–172.

    Article  CAS  PubMed  Google Scholar 

  36. Altinova AE, Toruner F, Bozkurt N, et al. Circulating concentrations of adiponectin and tumor necrosis factor-alpha in gestational diabetes mellitus. Gynecol Endocrinol. 2007;23(3):161–165.

    Article  CAS  PubMed  Google Scholar 

  37. Torricelli M, Voltolini C, Bloise E, et al. Urocortin increases IL-4 and IL-10 secretion and reverses LPS-induced TNF-alpha release from human trophoblast primary cells. Am J Reprod Immunol. 2009;62(4):224–231.

    Article  CAS  PubMed  Google Scholar 

  38. Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006;393(pt 1):7–20.

    Article  CAS  PubMed  Google Scholar 

  39. Babu E, Kanai Y, Chairoungdua A, et al. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem. 2003;278(44): 43838–43845.

    Article  CAS  PubMed  Google Scholar 

  40. Bodoy S, Martin L, Zorzano A, Palacin M, Estevez R, Bertran J. Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem. 2005;280(12):12002–12011.

    Article  CAS  PubMed  Google Scholar 

  41. Cleal JK, Glazier JD, Ntani G, et al. Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblast. J Physiol. 2011;589( pt 4):987–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin-Venegas R, Rodriguez-Lagunas MJ, Mercier Y, Geraert PA, Ferrer R. Effect of pH on L- and D-methionine uptake across the apical membrane of Caco-2 cells. Am J Physiol Cell Physiol. 2009;296(3):C632–C638.

    Article  CAS  PubMed  Google Scholar 

  43. Cetin I, de Santis MS, Taricco E, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005; 192(2):610–617.

    Article  CAS  PubMed  Google Scholar 

  44. Hatanaka T, Huang W, Wang H, et al. Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A. Biochim Biophys Acta. 2000;1467(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  45. Tsitsiou E, Sibley CP, D’Souza SW, Catanescu O, Jacobsen DW, Glazier JD. Homocysteine is transported by the microvillous plasma membrane of human placenta. J Inherit Metab Dis. 2011;34(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  46. Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52(12): 2951–2958.

    Article  CAS  PubMed  Google Scholar 

  47. Keating E, Martel F. Placental transport of folate and thiamine: a mini-review. Curr Womens Health Rev. 2008;4(2):141–146.

    Article  CAS  Google Scholar 

  48. Furesz TC, Smith CH, Moe AJ. ASC system activity is altered by development of cell polarity in trophoblast from human placenta. Am J Physiol. 1993;265(I pt 1): C212–C217.

    Article  CAS  PubMed  Google Scholar 

  49. Antony N, Bass JJ, McMahon CD, Mitchell MD. Myostatin regulates glucose uptake in BeWo cells. Am J Physiol Endocrinol Metab. 2007;293(5): E1296–E1302.

    Article  CAS  PubMed  Google Scholar 

  50. Jones HN, Jansson T, Powell TL. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol. 2009; 297(5):C1228–C1235.

    Article  CAS  PubMed  Google Scholar 

  51. Abad B, Mesonero JE, Salvador MT, Garcia-Herrera J, Rodriguez-Yoldi MJ. Tumor necrosis factor-alpha mediates inhibitory effect of lipopolysaccharide on L-leucine intestinal uptake. Dig Dis Sci. 2002;47(6):1316–1322.

    Article  CAS  PubMed  Google Scholar 

  52. Visigalli R, Bussolati O, Sala R, et al. The stimulation of arginine transport by TNFalpha in human endothelial cells depends on NF-kappaB activation. Biochim Biophys Acta. 2004;1664(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  53. Roos S, Lagerlof O, Wennergren M, Powell TL, Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol. 2009;297(3):C723–C731.

    Article  CAS  PubMed  Google Scholar 

  54. Fang J, Mao D, Smith CH, Fant ME. IGF regulation of neutral amino acid transport in the BeWo choriocarcinoma cell line (b30 clone): evidence for MAP kinase-dependent and MAP kinase-independent mechanisms. Growth Horm IGF Res. 2006; 16(5–6):318–325.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Martel PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, J.R., Correia-Branco, A., Ramalho, C. et al. l-Methionine Placental Uptake: Characterization and Modulation in Gestational Diabetes Mellitus. Reprod. Sci. 20, 1492–1507 (2013). https://doi.org/10.1177/1933719113488442

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113488442

Keywords

Navigation