Skip to main content

Advertisement

Log in

Progesterone Inhibits Folic Acid Transport in Human Trophoblasts

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The aim of this work was to test the putative involvement of members of the ABC superfamily of transporters on folic acid (FA) cellular homeostasis in the human placenta. [3H]FA uptake and efflux in BeWo cells were unaffected or hardly affected by multidrug resistance 1 (MDR1) inhibition (with verapamil), multidrug resistance protein (MRP) inhibition (with probenecid) or breast cancer resistance protein (BCRP) inhibition (with fumitremorgin C). However, [3H]FA uptake and efflux were inhibited by progesterone (200 μM). An inhibitory effect of progesterone upon [3H]FA uptake and efflux was also observed in human cytotrophoblasts. Moreover, verapamil and ß-estradiol also reduced [3H]FA efflux in these cells. Inhibition of [3H]FA uptake in BeWo cells by progesterone seemed to be very specific since other tested steroids (β-estradiol, corticosterone, testosterone, aldosterone, estrone and pregnanediol) were devoid of effect. However, efflux was also inhibited by β-estradiol and corticosterone and stimulated by estrone. Moreover, the effect of progesterone upon the uptake of [3H]FA by BeWo cells was concentration-dependent (IC50 = 65 [range 9–448] μM) and seems to involve competitive inhibition. Also, progesterone (1–400 μM) did not affect either [3H]FA uptake or efflux at an external acidic pH. Finally, inhibition of [3H]FA uptake by progesterone was unaffected by either 4-acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid (SITS), a known inhibitor of the reduced folate carrier (RFC), or an anti-RFC antibody. These results suggest that progesterone inhibits RFC. In conclusion, our results show that progesterone, a sterol produced by the placenta, inhibits both FA uptake and efflux in BeWo cells and primary cultured human trophoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antony AC (1996) Folate receptors. Annu Rev Nutr 16:501–521

    Article  PubMed  CAS  Google Scholar 

  • Assaraf YG, Rothem L, Hooijberg JH, Stark M, Ifergan I, Kathmann I, Dijkmans BA, Peters GJ, Jansen G (2003) Loss of multidrug resistance protein 1 expression and folate efflux activity results in a highly concentrative folate transport in human leukemia cells. J Biol Chem 278:6680–6686

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD (2001) Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 1520:234–241

    PubMed  CAS  Google Scholar 

  • Barnes MK, Dickstein B, Cutler GB Jr, Fojo T, Bates SE (1996) Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry 35:4820–4827

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Oude Elferink R (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Casey ML, MacDonald PC (1998) Endocrine changes of pregnancy. In: Wilson JD, Foster DW, Kronenberg HM, Larsen P (eds), Williams Textbook of Endocrinology, 9th ed, sect 8. Philadelphia: WB Saunders, pp 1259–1271

    Google Scholar 

  • Chancy CD, Kekuda R, Huang W, Prasad PD, Kuhnel J-M, Sirotnak FM, Roon P, Ganapathy V, Smith SB (2000) Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor α in mammalian retinal pigment epithelium. J Biol Chem 275:20676–20684

    Article  PubMed  CAS  Google Scholar 

  • Chen Z-H, Robey RW, Belinsk MG, Shchaveleva I, Ren X-Q, Sugimoto Y, Ross DD, Bates SE, Kruh GD (2003) Transport of methotrexate, methotrexate polyglutamates, and 17ß-estradiol 17-(ß-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 63:4048–4054

    PubMed  CAS  Google Scholar 

  • Chen Z-S, Lee K, Walther S, Raftogianis RB, Kuwano M, Zeng H, Kruh GD (2002) Analysis of methotrexate and folate transport by multidrug resistance protein 4: MRP4 is a component of the methotrexate efflux system. Cancer Res 62:3144–3150

    PubMed  CAS  Google Scholar 

  • Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429

    Article  PubMed  CAS  Google Scholar 

  • Hazlehurst LA, Foley NE, Gleason-Guzman MC, Hacker MP, Cress AE, Greenberger LW, De Jong MC, Dalton WS (1999) Multiple mechanisms confer drug resistance to mitoxantrone in the human 8226 myeloma cell line. Cancer Res 59:1021–1028

    PubMed  CAS  Google Scholar 

  • Herbert V (1999) Folic acid. In: Shils ME, Olson JA, Shike M, Ross AH (eds), Modern Nutrition in Health and Disease, 9th ed. London: Lippincott, Williams & Wilkins, pp 433–446

    Google Scholar 

  • Hooijberg JH, Peters GJ, Assaraf YG, Kathmann I, Priest DG, Bunni MA, Veerman AJ, Scheffer GL, Kaspers GJ, Jansen G (2003) The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis. Biochem Pharmacol 65:765–771

    Article  PubMed  CAS  Google Scholar 

  • Ifergan I, Shafran A, Jansen G, Hooijberg JH, Scheffer GL, Assaraf YG (2004) Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression. A role for BCRP in cellular folate homeostasis. J Biol Chem 279:25527–25534

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y (2002) Estrone and 17ß-estradiol reverse breast cancer resistance protein-mediated multidrug resistance. Jpn J Cancer Res 93:231–235

    PubMed  CAS  Google Scholar 

  • Keating E, Lemos C, Azevedo I, Martel F (2007) Acute and chronic effects of some dietary bioactive compounds on folic acid uptake and on the expression of folic acid transporters by the human trophoblast cell line BeWo. J Nutr Biochem (in press)

  • Keating E, Lemos C, Azevedo I, Martel F (2006) Comparison of folate uptake characteristics by human placental choriocarcinoma cells at acidic and physiological pH. Can J Physiol Pharmacol 84:247–255

    Article  PubMed  CAS  Google Scholar 

  • Keating E, Lemos C, Costa F, Campos I, Azevedo I, Martel F (2005) Placental vitamin B9 uptake: characterization in human isolated cytotrophoblasts. Placenta 26:A48

    Google Scholar 

  • Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF 3rd (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118:1567–1582

    Article  PubMed  CAS  Google Scholar 

  • Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Gen Metab 71:121–138

    Article  CAS  Google Scholar 

  • Matherly LH, Goldman ID (2003) Membrane transport of folates. Vitam Horm 66:403–456

    Article  PubMed  CAS  Google Scholar 

  • McGuire JJ (2003) Anticancer antifolates: current status and future directions. Curr Pharm Des 9:2593–2613

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki H, Sekine T, Endou H (2004) The multispecific organic anion transporter family: properties and pharmacological significance. Trends Pharmacol Sci 25:654–662

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Ikeda S, Furukawa T, Sumizawa T, Tani A, Akiyama S, Nagata Y (1997) Function of P-glycoprotein expressed in placenta and mole. Biochem Biophys Res Commun 235:849–853

    Article  PubMed  CAS  Google Scholar 

  • Pascolo L, Fernetti C, Garcia-Mediavilla MV, Ostrow JD, Tiribelli C (2001) Mechanisms for the transport of unconjugated bilirubin in human trophoblastic BeWo cells. FEBS Lett 495:94–99

    Article  PubMed  CAS  Google Scholar 

  • Picciano MF (2003) Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 133:1997S–2002S

    PubMed  Google Scholar 

  • Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60:47–50

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  PubMed  CAS  Google Scholar 

  • Sirotnak FM, Tolner B (1999) Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr 19:91–122

    Article  PubMed  CAS  Google Scholar 

  • Strauss JF III, Martinez F, Kiriakidou M (1996) Placental steroid hormone synthesis: unique features and unanswered questions. Biol Reprod 54:303–311

    Article  PubMed  CAS  Google Scholar 

  • Sugawara I, Akiyama S, Scheper RJ, Itoyama S (1997) Lung resistance protein (LRP) expression in human normal tissues in comparison with that of MDR1 and MRP. Cancer Lett 112:23–31

    Article  PubMed  CAS  Google Scholar 

  • Tamimi R, Lagiou P, Vatten LJ, Mucci L, Trichopoulos D, Hellerstein S, Ekbom A, Adami H-O, Hsieh C-C (2003) Pregnancy hormones, pre-eclampsia, and implications for breast cancer risk in the offspring. Cancer Epidemiol Biomarkers Prev 12:647–650

    PubMed  CAS  Google Scholar 

  • Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioda N, Komano T, Hori R (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267:24248–24252

    PubMed  CAS  Google Scholar 

  • Ushigome F, Takanaga H, Matsuo H, Yanai S, Tsukimori K, Nakano H, Uchiumi T, Nakamura T, Kuwano M, Ohtani H, Sawada Y (2000) Human placental transport of vinblastine, vincristine, digoxin and progesterone: contribution of P-glycoprotein. Eur J Pharmacol 408:1–10

    Article  PubMed  CAS  Google Scholar 

  • Utoguchi N, Chandorkar GA, Avery M, Audus KL (2000) Functional expression of P-glycoprotein in primary cultures of human cytotrophoblasts and BeWo cells. Reprod Toxicol 14:217–224

    Article  PubMed  CAS  Google Scholar 

  • Worthington-Roberts BS (1999) Nutrition. In: Cohen WR, Cherry SH, Merkatz IR (eds), Cherry and Merkatz’s Complications of Pregnancy, 5th ed. London: Lippincott Williams & Wilkins, pp 17–49

    Google Scholar 

  • Young AM, Allen CE, Audus KL (2003) Efflux transporters of the human placenta. Adv Drug Deliv Rev 55:125–132

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Chen Z-S, Belinsky MG, Rea PA, Kruh GD (2001) Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 61:7225–7232

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by FCT and Programa Ciência, Tecnologia e Inovação do Quadro Comunitário de Apoio (POCI/SAU-FCF/59382/2004) and the National Institutes of Health (NIH/NEI R01 EY12830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Martel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, E., Gonçalves, P., Lemos, C. et al. Progesterone Inhibits Folic Acid Transport in Human Trophoblasts. J Membrane Biol 216, 143–152 (2007). https://doi.org/10.1007/s00232-007-9057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9057-5

Keywords

Navigation