Skip to main content

Advertisement

Log in

Temporal Changes in Matrix Metalloproteinases, Their Inhibitors, and Cathepsins in Mouse Pubic Symphysis During Pregnancy and Postpartum

  • Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Remodeling and relaxation of the mouse pubic symphysis (PS) are central events in parturition. The involvement of endogenous proteins such as matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and cathepsins in these phenomena remains unclear. In this work, we used a combination of immunolocalization, protein expression/activity, and relative messenger RNA (mRNA) expression to examine the changes in selected MMPs (-2, -9, and -8), TIMPs (-1 and -2), and cathepsins (B and K) during pregnancy and postpartum in mice. Immunohistochemistry revealed the presence of all of these proteins in the cytoplasm of chondrocytes, fibrochondrocytes, and fibroblast-like cells in the interpubic tissues. Zymography showed increases in the active forms of MMP-2 and -9 primarily on days 15 to 19 of pregnancy. Western blotting showed enhanced expression of MMP-8 on days 12 to 15 of pregnancy, with no changes in cathepsins B and K. Matrix metalloproteinases 2, TIMP-1 and -2, and cathepsin B had significant relative gene expression throughout pregnancy. These findings indicate that during pregnancy and postpartum there are variations in the expression and activity of proteins that may have an important role in remodeling the pubic symphysis during these events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall K. The effects of pregnancy and relaxin on the histology of the pubic symphysis in the mouse. J Endocrinol. 1947;5(3):174–182

    CAS  PubMed  Google Scholar 

  2. Crelin ES. The development of the bony pelvis and its changes during pregnancy and parturition. Trans N Y Acad Sci. 1969;31(8):1049–1058

    Article  Google Scholar 

  3. Crelin ES, Newton EV. The pelvis of the free-tailed bat: sexual dimorphism and pregnancy changes. Anat Rec. 1969;164(3):349–357

    Article  CAS  PubMed  Google Scholar 

  4. Wahl LM, Blandau RJ, Page RC. Effect of hormones on collagen metabolism and collagenase activity in the pubic symphysis ligament of the guinea pig. Endocrinology. 1977;100(2):571–579

    Article  CAS  PubMed  Google Scholar 

  5. Gamble JG, Simmons SC, Freedman M. The symphysis pubis. Anatomic and pathologic considerations. Clin Orthop Relat Res. 1986;203(2):261–272

    Google Scholar 

  6. Sherwood OD. RelaxinIn. Knobil E, Neill, JD, eds. The Physiology of Reproduction. vol 2. New York, NY: Raven Press; 1994: 861–1009.

    Google Scholar 

  7. Hashem G, Zhang Q, Hayami T, Chen J, Wang W, Kapila S. Relaxin and β-estradiol modulate targeted matrix degradation in specific synovial joint fibrocartilages: progesterone prevents matrix loss. Arthritis Res Ther. 2006;8(4):R98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Davidson MR. Examining separated symphysis pubis. J Nurse Midwifery. 1996;41(3):259–262

    Article  CAS  PubMed  Google Scholar 

  9. Snow RE, Neubert AG. Peripartum pubic symphysis separation: a case series and review of the literature. Obstet Gynecol Surv. 1997;52(7):438–443

    Article  CAS  PubMed  Google Scholar 

  10. Bjorklund K, Bergström S, Nordström ML, Ulmsten U. Symphyseal distention in relation to serum relaxin levels and pelvic pain in pregnancy. Acta Obstet Gynecol Scand. 2000;79(4):269–275

    Article  CAS  PubMed  Google Scholar 

  11. Owens K, Pearson A, Mason G. Symphysis pubis dysfunction—a cause of significant obstetric morbidity. Eur J Obstet Gynecol Reprod Biol. 2002;105(2):143–146

    Article  PubMed  Google Scholar 

  12. Zhao L, Samuel CS, Tregear GW, Beck F, Wintour EM. Collagen studies in late pregnant relaxin null mice. Biol Reprod. 2000;63(3):697–703

    Article  CAS  PubMed  Google Scholar 

  13. Talmage RV. Changes produced in the symphyseal pubis of guinea pig by the sex steroids and relaxin. Anat Rec. 1947;99(1):91–113

    Article  CAS  PubMed  Google Scholar 

  14. Talmage RV. A histological study of the effects of relaxin on the symphysis pubis of the guinea pig. J Exp Zool. 1947;106(3):281–297

    Article  CAS  PubMed  Google Scholar 

  15. McDonald JK, Schwabe C. Relaxin induced elevations of cathepsin B and dipeptidyl peptidase I in the mouse pubic symphysis, with localization by fluorescence enzyme histochemistry. Ann N Y Acad Sci. 1982;380:178–186.

    Article  CAS  PubMed  Google Scholar 

  16. Ortega HH, Muñoz-de-Toro MM, Luque EH, Montes GS. Morphological characteristic of the interpubic joint (symphysis pubica) of rats, guinea pigs and mice in different physiological situations. A comparative study. Cells Tissues Organs. 2003;173(2):105–114

    Article  PubMed  Google Scholar 

  17. Moraes SG, Pinheiro MC, Toledo OMS, Joazeiro P. Phenotypic modulation of fibroblastic cells in mice pubic symphysis during pregnancy, partum and postpartum. Cell Tissue Res. 2004;315(2):223–231

    Article  PubMed  Google Scholar 

  18. Veridiano AM, Garcia EA, Pinheiro MC, Nishimori FY, Toledo OMS, Joazeiro PP. The mouse pubic symphysis as a remodeling system: morphometrical analysis of proliferation and cell death during pregnancy, partus and postpartum. Cell Tissue Res. 2007;330(1):161–167

    Article  CAS  PubMed  Google Scholar 

  19. Weiss M, Nagelschmidt M, Struck H. Relaxin and collagen metabolism. Hormone Metab Res. 1979;11(6):408–410

    Article  CAS  Google Scholar 

  20. Rosa RG, Tarsitano CA, Hyslop S, Yamada AT, Toledo OM, Joazeiro PP. Relaxation of the mouse pubic symphysis during late pregnancy is not accompanied by the influx of granulocytes. Microsc Res Tech. 2008;71(3):169–178

    Article  CAS  PubMed  Google Scholar 

  21. Pinheiro MC, Joazeiro PP, Mora OA, Toledo OM. Ultrastructural and immunohistochemistry analysis of proteoglycans in mouse pubic symphysis. Cell Biol Int. 2003;27(8):647–655

    Article  CAS  PubMed  Google Scholar 

  22. Pinheiro MC, Mora OA, Caldini EG, Battlehner CN, Joazeiro PP, Toledo OMS. Ultrastructural, immunohistochemical and biochemical analysis of glycosaminoglycans and proteoglycans in the mouse pubic symphysis during pregnancy. Cell Biol Int. 2005;29(6):458–471

    Article  CAS  PubMed  Google Scholar 

  23. Somerville RPT, Oblander SA, Apte SS. Matrix metalloproteinase: old dogs with new tricks. Genome Biol. 2003;4(6):216.01–216.11

    Article  Google Scholar 

  24. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001;13(5):534–540

    Article  CAS  PubMed  Google Scholar 

  25. Lenhart JA, Ryan PT, Ohleth KM, Palmer SS, Bagnell CA. Relaxin increases secretion of tissue inhibitor of matrix metalloproteinase-1 and -2 during uterine and cervical growth and remodelling in the pig. Endocrinology. 2002;143(1):91–98

    Article  CAS  PubMed  Google Scholar 

  26. Stygar D, Wang H, Vladic YS, Ekman G, Eriksson H, Sahlin L. Increased level of matrix metalloproteinases 2 and 9 in the ripening process of the human cervix. Biol Reprod. 2002;67(3):889–894

    Article  CAS  PubMed  Google Scholar 

  27. Nuttall RK, Sampieri CL, Pennington CJ, Gill SE, Schultz GA, Edwards DR. Expression analysis of the MMP and TIMP gene families during mouse tissue development. FEBS Lett. 2004;563(1–3):129–134

    Article  CAS  PubMed  Google Scholar 

  28. Curry TE, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocrine Rev. 2003;24(4):428–465

    Article  CAS  Google Scholar 

  29. Imada K, Ito A, Sato T, Namiki M, Nagase H, Mori Y. Hormonal regulation of matrix metalloproteinase 9/gelatinase B gene expression in rabbit uterine cervical fibroblasts. Biol Reprod. 1997;56(3):575–580

    Article  CAS  PubMed  Google Scholar 

  30. Uusitalo H, Hiltunen A, Soderstrom M, Aro HT, Vuoro E. Expression of cathepsins B, H, K, L, and S and matrix metalloproteinases 9 and 13 during chondrocyte hypertrophy and endochondral ossification in mouse fracture callus. Calcif Tissue Int. 2000;67(5):382–390

    Article  CAS  PubMed  Google Scholar 

  31. Sennström MB, Brauner A, Bystrom B, Malmstrom A, Ekman G. Matrix metalloproteinase-8 correlates with the cervical ripening process in humans. Acta Obstet Gynecol Scand. 2003;82(10):904–911

    Article  PubMed  Google Scholar 

  32. Noda M, Oh J, Takahashi R, Kondo S, Kitayama H, Takahashi C. RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev. 2003;22(2–3):167–175

    Article  CAS  PubMed  Google Scholar 

  33. Chirco R, Liu XW, Jung KK, Kim RRC. Novel functions of TIMPs in cell signalling. Cancer Metastasis Rev. 2006;25(1):99–113

    Article  CAS  PubMed  Google Scholar 

  34. Amălinei C, Căruntu ID, Bălan RA. Biology of metalloproteinases. Roman J Morphol Embryol. 2007;48(4):323–334

    Google Scholar 

  35. Hulboy Dl, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Human Rep. 1997;3(1):27–45

    Article  CAS  Google Scholar 

  36. Lecaille F, Bromme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie. 2008;90(2):208–226

    Article  CAS  PubMed  Google Scholar 

  37. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  38. Calvo IR, Ocón B, Moya PM, et al. Reversible Ponceau staining as a loading control alternative to actin in western blots. Anal Biochem. 2010;401(2):318–320

    Article  CAS  Google Scholar 

  39. DiScipio RG, Schraufstatter IU, Sikora L, Zuraw BL, Sriramarao P. C5a mediates secretion and activation of matrix metalloproteinase 9 from human eosinophils and neutrophils. Int Immunopharmacol. 2006;6(7):1109–1118

    Article  CAS  PubMed  Google Scholar 

  40. Laborda J. 36B4 cDNA used as an estradiol-independent mRNA control is the cDNA for human acidic ribosomal phosphoprotein PO. Nucleic Acids Res. 1991;19(14):3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–464

    Article  CAS  PubMed  Google Scholar 

  42. Balbín M, Fueyo A, Knäuper V, et al. Collagenase 2 (MMP-8) expression in murine tissue-remodeling process. J Biol Chem. 1998;273(37):23959–23968

    Article  PubMed  Google Scholar 

  43. Naesse EP, Schreurs O, Helgeland K, Schenck K, Steinsvoll SM. Matrix metalloproteinases and their inhibitors in gingival mast cells in persons with and without human immunodeficiency virus infection. J Periodontol. 2003;38(6):575–582

    CAS  Google Scholar 

  44. Parry LJ, McGuane JT, Gehring HM, Kostic IGT, Siebel AL. Mechanisms of relaxin action in the reproductive tract: studies in the relaxin-deficient (Rlx-/- mouse. Ann N Y Acad Sci. 2005 1041:91–103.

    Article  CAS  PubMed  Google Scholar 

  45. Kerkhof MH, Hendriks H, Brölmann HA. Changes in connective tissue in patients with pelvic organ prolapse—a review of the current literature. Int Urogynecol J. 2009;20(4):461–474

    Article  CAS  Google Scholar 

  46. Dubois B, Arnold B, Opdenakker G. Gelatinase B deficiency impairs reproduction. J Clin Invest. 2000;106(5):627–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell. 2007;8(3):221–233

    Article  CAS  Google Scholar 

  48. Lambert V, Wielockx B, Munaut C, et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. 2003;17(15):2290–2292

    Article  CAS  PubMed  Google Scholar 

  49. Yang S, Rembiesa B, Büllesbach EE, Schwabe C. Relaxin receptors in mice: demonstration of ligand binding in symphyseal tissues and uterine membrane fragments. Endocrinology. 1992;130(1):179–185

    Article  CAS  PubMed  Google Scholar 

  50. Lenhart JA, Ryan PT, Ohleth KM, Palmer SS, Bagnell CA. Relaxin increases secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 during uterine and cervical growth and remodeling in the pig. Endocrinology. 2001;142(9):3941–3949

    Article  CAS  PubMed  Google Scholar 

  51. Arguello RJ, Pérez CE, Delgado CR, Solorza LG, Villa TS, Arenas HF. Matrix metalloproteinases-2, -3, and -9 secreted by explants of benign and malignant lesions of the uterine cervix. Int J Gynecol. 2004;14(2):333–340

    Article  Google Scholar 

  52. Henneman S, Bildt MM, DeGroot J, Kuijpers-Jagtman AM, Von den Hoff JW. Relaxin stimulates MMP-2 and α-smooth muscle actin expression by human periodontal ligament cells. Arch Oral Biol. 2008;53(2):161–167

    Article  CAS  PubMed  Google Scholar 

  53. Wang W, Hayami T, Kapila S. Female hormone receptors are differentially expressed in mouse fibrocartilages. Osteoarthr Cartil. 2009;17(5):646–654

    Article  CAS  Google Scholar 

  54. An BS, Choi KC, Kang SK, et al. Mouse calbindin-D9k gene expression in the uterus during late pregnancy and lactation. Mol Cell Endocrinol. 2003;205(1–2):79–88

    Article  CAS  PubMed  Google Scholar 

  55. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000;1477(1–2):267–283

    Article  CAS  PubMed  Google Scholar 

  56. Fassina G, Ferrari N, Brigati C, et al. Tissue inhibitors of metalloproteinases: regulation and biological activities. Clin Exp Metastasis. 2000;18(2):111–120

    Article  CAS  PubMed  Google Scholar 

  57. Mason RW, Jonson DA, Barret AJ, Chapman HA. Elastinolytic activity of human cathepsin L. Biochem J. 1986;233(3):925–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kostoulas G, Lang A, Nagase H, Baici A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS J. 1999;455(3):286–290

    Article  CAS  Google Scholar 

  59. Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 2010;21(6):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wieslander CK, Marinis SI, Drewes PG, Keller PW, Acevedo JF, Word AR. Regulation of elastolytic proteases in the mouse vagina during pregnancy, parturition, and puerperium. Biol Reprod. 2008;78(3):521–528

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo P. Joazeiro PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, R.G., Tarsitano, C.A.B., Hyslop, S. et al. Temporal Changes in Matrix Metalloproteinases, Their Inhibitors, and Cathepsins in Mouse Pubic Symphysis During Pregnancy and Postpartum. Reprod. Sci. 18, 963–977 (2011). https://doi.org/10.1177/1933719111401657

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111401657

Keywords

Navigation