Skip to main content

Advertisement

Log in

Salivary Amylase: Digestion and Metabolic Syndrome

  • Obesity (J McCaffery, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Salivary amylase is a glucose-polymer cleavage enzyme that is produced by the salivary glands. It comprises a small portion of the total amylase excreted, which is mostly made by the pancreas. Amylases digest starch into smaller molecules, ultimately yielding maltose, which in turn is cleaved into two glucose molecules by maltase. Starch comprises a significant portion of the typical human diet for most nationalities. Given that salivary amylase is such a small portion of total amylase, it is unclear why it exists and whether it conveys an evolutionary advantage when ingesting starch. This review will consider the impact of salivary amylase on oral perception, nutrient signaling, anticipatory metabolic reflexes, blood sugar, and its clinical implications for preventing metabolic syndrome and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Dawes C, Pedersen AM, Villa A, et al. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol. 2015;60(6):863–74.

    Article  CAS  PubMed  Google Scholar 

  2. Ruhl S. The scientific exploration of saliva in the post-proteomic era: from database back to basic function. Expert Rev Proteomics. 2012;9(1):85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11(2):216–29.

    Article  CAS  PubMed  Google Scholar 

  4. Henkin RI, Gill Jr JR, Bartter FC. Studies on taste thresholds in normal man and in patients with adrenal cortical insufficiency: the role of adrenal cortical steroids and of serum sodium concentration. J Clin Invest. 1963;42(5):727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Power ML, Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50(2):194–206.

    Article  PubMed  Google Scholar 

  6. Woods SC. The eating paradox: how we tolerate food. Psychol Rev. 1991;98(4):488.

    Article  CAS  PubMed  Google Scholar 

  7. Loo JA, Yan W, Ramachandran P, et al. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89(10):1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scannapieco FA, Torres G, Levine MJ. Salivary α-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med. 1993;4(3):301–7.

    CAS  PubMed  Google Scholar 

  9. Jacobsen N, Melvaer KL, Hensten-Pettersen A. Some properties of salivary amylase: a survey of the literature and some observations. J Dent Res. 1972;51(2):381–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hall FF, Ratliff CR, Hayakawa T, et al. Substrate differentiation of human pancreatic and salivary alpha-amylases. Am J Dig Dis. 1970;15(11):1031–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenblum JL, Irwin CL, Alpers DH. Starch and glucose oligosaccharides protect salivary-type amylase activity at acid pH. Am J Physiol Gastrointest Liver Physiol. 1988;254(5):G775–80.

    CAS  Google Scholar 

  12. Hoebler C, Karinthi A, Devaux MF, et al. Physical and chemical transformations of cereal food during oral digestion in human subjects. Br J Nutr. 1998;80(05):429–36.

    Article  CAS  PubMed  Google Scholar 

  13. Mandel AL, Peyrot des Gachons C, Plank KL, et al. Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch. PLoS One. 2010;5(10):e13352.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lapis TJ, Penner MH, Lim J. Evidence that humans can taste glucose polymers. Chem Senses. 2014;39(9):737–47.

    Article  PubMed  Google Scholar 

  15. Boehlke C, Zierau O, Hannig C. Salivary amylase—the enzyme of unspecialized euryphagous animals. Arch Oral Biol. 2015;60(8):1162–76.

    Article  CAS  PubMed  Google Scholar 

  16. Samuelson LC, Phillips RS, Swanberg LJ. Amylase gene structures in primates: retroposon insertions and promoter evolution. Mol Biol Evol. 1996;13(6):767–79.

    Article  CAS  PubMed  Google Scholar 

  17. Chatterton RT, Vogelsong KM, Lu Y, Ellman AB, Hudgens GA. Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol. 1996;16:433–48.

    Article  CAS  PubMed  Google Scholar 

  18. Ehlert U, Kirschbaum C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 2007;32(4):392–401.

    Article  PubMed  Google Scholar 

  19. Squires BT. Human salivary amylase secretion in relation to diet. J Physiol. 1953;119:153–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bank RA, Hettema EH, Muijs MA, et al. Variation in gene copy number and polymorphism of the human salivary amylase isoenzyme system in Caucasians. Hum Genet. 1992;89(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  21. Perry GH, Dominy NJ, Claw KG, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007;39(10):1256–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang ZM, Lin J, Chen LH, et al. The roles of AMY1 copies and protein expression in human salivary α-amylase activity. Physiol Behav. 2015;138:173–8.

    Article  CAS  PubMed  Google Scholar 

  23. Groot PC, Mager WH, Henriquez NV, et al. Evolution of the human α-amylase multigene family through unequal, homologous, and inter-and intrachromosomal crossovers. Genomics. 1990;8(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  24. Cooper GM, Nickerson DA, Eichler EE. Mutational and selective effects on copy-number variants in the human genome. Nat Genet. 2007;39:S22–9.

    Article  CAS  PubMed  Google Scholar 

  25. Perry GH. The evolutionary significance of copy number variation in the human genome. Cytogenet Genome Res. 2008;123(1–4):283–7.

    CAS  PubMed  Google Scholar 

  26. Carpenter D, Dhar S, Mitchell LM, et al. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum Mol Genet. 2015;24(12):3472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Usher CL, Handsaker RE, Esko T, et al. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat Genet. 2015;47(8):921–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hardy K, Brand-Miller J, Brown KD, et al. The importance of dietary carbohydrate in human evolution. Q Rev Biol. 2015;90(3):251–68.

    Article  PubMed  Google Scholar 

  29. Simpson JW, Doxey DL, Brown R. Serum isoamylase values in normal dogs and dogs with exocrine pancreatic insufficiency. Vet Res Commun. 1984;8(1):303–8.

    Article  CAS  PubMed  Google Scholar 

  30. Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495(7441):360–4. Show evidence for gain-of-function in AMY2B gene but also in the MGAM and SGLT1 genes in dogs.

    Article  CAS  PubMed  Google Scholar 

  31. Arendt M, Fall T, Lindblad‐Toh K, et al. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes. Anim Genet. 2014;45(5):716–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ting CN, Rosenberg MP, Snow CM, Samuelson LC, Meisler MH. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 1992;6:1457–65.

    Article  CAS  PubMed  Google Scholar 

  33. Meisler MH, Ting CN. The remarkable evolutionary history of the human amylase genes. Crit Rev Oral Biol Med. 1993;4(3):503–9.

    CAS  PubMed  Google Scholar 

  34. Evans ID, Haisman DR, Elson EL, et al. The effect of salivary amylase on the viscosity behaviour of gelatinised starch suspensions and the mechanical properties of gelatinised starch granules. J Sci Food Agric. 1986;37(6):573–90.

    Article  CAS  Google Scholar 

  35. Sclafani A, Nissenbaum JW, Vigorito M. Starch preference in rats. Neurosci Biobehav Rev. 1987;11(2):253–62.

    Article  CAS  PubMed  Google Scholar 

  36. Vigorito M, Sclafani A. Ontogeny of polycose and sucrose appetite in neonatal rats. Dev Psychobiol. 1988;21(5):457–65.

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez IS. Chemoreception for an insoluble nonvolatile substance: starch taste? Am J Physiol Regul Integr Comp Physiol. 1991;260(1):R192–9.

    CAS  Google Scholar 

  38. Treesukosol Y, Smith KR, Spector AC. Behavioral evidence for a glucose polymer taste receptor that is independent of the T1R2+ 3 heterodimer in a mouse model. J Neurosci Nurs. 2011;31(38):13527–34.

    Article  CAS  Google Scholar 

  39. Zukerman S, Glendinning JI, Margolskee RF, et al. T1R3 taste receptor is critical for sucrose but not polycose taste. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R866–76.

    Article  CAS  PubMed  Google Scholar 

  40. Breslin PAS, Beauchamp GK, Pugh EN. Monogeusia for fructose, glucose, sucrose, and maltose. Percept Psychophys. 1996;58(3):327–41.

    Article  CAS  PubMed  Google Scholar 

  41. Yee KK, Sukumaran SK, Kotha R, et al. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci. 2011;108(13):5431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sukumaran SK, Yee KK, Iwata S, et al. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. PNAS. 2016;113(21):6035–40. Evidence of the expression of salivary amylase and maltase in taste cells and surrounding lingual salivary glands.

    Article  CAS  PubMed  Google Scholar 

  43. Margolskee RF, Dyer J, Kokrashvili Z, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na + −glucose cotransporter 1. Proc Natl Acad Sci. 2007;104(38):15075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cloutier M, Gingras D, Bendayan M. Internalization and transcytosis of pancreatic enzymes by the intestinal mucosa. J Histochem Cytochem. 2006;54(7):781–94.

    Article  CAS  PubMed  Google Scholar 

  45. Merigo F, Benati D, Cecchini MP, et al. Amylase expression in taste receptor cells of rat circumvallate papillae. Cell Tissue Res. 2009;336(3):411–21.

    Article  CAS  PubMed  Google Scholar 

  46. Pavlov IP. The work of the digestive glands. London: Charles Griffin Co Ltd; 1902.

    Google Scholar 

  47. Farrell JI. Contributions to the physiology of gastric secretion. Am J Physiol. 1928;85:672–87.

    CAS  Google Scholar 

  48. Preshaw RM, Cooke AR, Grossman MI. Quantitative aspects of response of canine pancreas to duodenal acidification. Gastroenterology. 1966;210:629–34.

    CAS  Google Scholar 

  49. Powley TL. The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychol Rev. 1977;84:89–126.

    Article  CAS  PubMed  Google Scholar 

  50. Ahren B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50:1030–8.

    Article  CAS  PubMed  Google Scholar 

  51. Mandel AL, Breslin PA. High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. J Nutr. 2012;142(5):853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Glendinning JI, Stano S, Holter M, et al. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+ T1r3-independent taste transduction pathway in mice. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Williams JA, Goldfine ID. The insulin-pancreatic acinar axis. Diabetes. 1985;34(10):980–6.

    Article  CAS  PubMed  Google Scholar 

  54. Schneyer CA, Schneyer LH. Amylase in rat serum, submaxillary gland and liver following pilocarpine administration or normal feeding. Am J Physiol. 1960;198:771–3.

    CAS  PubMed  Google Scholar 

  55. Schrifin A, Tuchman L, Antopol W. Blood amylase response to acetyl-b-methylcholine chloride in rabbits. Proc Soc Exp Biol Med. 1936;34:539–40.

    Article  Google Scholar 

  56. Isenman L, Liebow C, Rothman S. The endocrine secretion of mammalian digestive enzymes by exocrine glands. Am J Physiol Endocrinol Metab. 1999;276(2):E223–32.

    CAS  Google Scholar 

  57. Pieper-Bigelow C, Strocchi A, Levitt MD. Where does serum amylase come from and where does it go? Gastroenterol Clin North Am. 1990;19(4):793–810.

    CAS  PubMed  Google Scholar 

  58. Proctor GB, Asking B, Garrett JR. Serum amylase of non-parotid and non-pancreatic origin increases on feeding in rats and may originate from the liver. Comp Biochem Physiol B Biochem Mol Biol. 1991;98(4):631–5.

    Article  CAS  Google Scholar 

  59. Messer MI, Dean RT. Immunochemical relationship between α-amylases of rat liver, serum, pancreas and parotid gland. Biochem J. 1975;151(1):17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hokari S, Miura K, Koyama I, et al. Expression of α-amylase isozymes in rat tissues. Comp Biochem Physiol B Biochem Mol Biol. 2003;135(1):63–9.

    Article  PubMed  Google Scholar 

  61. McGeachin RL, Abshier WM, O’Leary K. The effects of puromycin and actinomycin D on the serum and liver amylase levels in the mouse, rabbit, and rat. Carbohydr Res. 1978;61(1):425–9.

    Article  CAS  PubMed  Google Scholar 

  62. Rohr G, Scheele G. Fate of radioactive exocrine pancreatic proteins injected into the blood circulation of the rat. Tissue uptake and transepithelial excretion. Gastroenterol. 1983;85(5):991–1002.

    CAS  Google Scholar 

  63. Falchi M, Moustafa JS, Takousis P, et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet. 2014;46(5):492–7. First article showing a positive association between AMY CN and obesity.

    Article  CAS  PubMed  Google Scholar 

  64. Viljakainen H, Andersson-Assarsson JC, Armenio M, et al. Low copy number of the AMY1 locus is associated with early-onset female obesity in Finland. PLoS One. 2015;10(7):e0131883.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mejía-Benítez MA, Bonnefond A, Yengo L, et al. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia. 2015;58(2):290–4.

    Article  PubMed  Google Scholar 

  66. Marcovecchio ML, Florio R, Verginelli F, et al. Low AMY1 gene copy number is associated with increased body mass index in prepubertal boys. PLoS One. 2016;11(5):e0154961.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Usher CL, McCarroll SA. Complex and multi-allelic copy number variation in human disease. Brief Funct Genomics. 2015;elv028.14:329–38.

  68. Yong RY, Mustaffa SA, Wasan PS, et al. Complex copy number variation of AMY1 does not associate with obesity in two East Asian cohorts. Hum Mutat. 2016;37:669–78.

  69. Nakajima K. Low serum amylase and obesity, diabetes and metabolic syndrome: a novel interpretation. World J Diabetes. 2016;7(6):112. Interesting review on low serum amylase and metabolic syndrome.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Skrha J, Stĕpán J. Clinical significance of amylase isoenzyme determination. Acta Univ Carol Med Monogr. 1986;120:1–81.

    Google Scholar 

  71. Dandona P, Freedman DB, Foo Y, Perkins J, Katrak A, Mikhailidis DP, et al. Exocrine pancreatic function in diabetes mellitus. J Clin Pathol. 1984;37:302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Swislocki A, Noth R, Hallstone A, Kyger E, Triadafilopoulos G. Secretin-stimulated amylase release into blood is impaired in type 1 diabetes mellitus. Horm Metab Res. 2005;37:326–30.

    Article  CAS  PubMed  Google Scholar 

  73. Lee JG, Park SW, Cho BM, et al. Serum amylase and risk of the metabolic syndrome in Korean adults. Clin Chim Acta. 2011;412(19):1848–53.

    Article  CAS  PubMed  Google Scholar 

  74. Nakajima K, Nemoto T, Muneyuki T, et al. Low serum amylase in association with metabolic syndrome and diabetes: a community-based study. Cardiovasc Diabetol. 2011;10(1):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakajima K, Muneyuki T, Munakata H, et al. Revisiting the cardiometabolic relevance of serum amylase. BMC Res Notes. 2011;4(1):419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Muneyuki T, Nakajima K, Aoki A, et al. Latent associations of low serum amylase with decreased plasma insulin levels and insulin resistance in asymptomatic middle-aged adults. Cardiovasc Diabetol. 2012;11(80):10–186.

    Google Scholar 

  77. Zhao Y, Zhang J, Zhang J, et al. Metabolic syndrome and diabetes are associated with low serum amylase in a Chinese asymptomatic population. Scand J Clin Lab Invest. 2014;74(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  78. Mossner J, Logsdon CD, Goldfine ID, et al. Regulation of pancreatic acinar cell insulin receptors by insulin. Am J Physiol Gastrointest Liver Physiol. 1984;247(2):G155–60.

    CAS  Google Scholar 

  79. Schneeman BO, Inman MD, Stern JS. Pancreatic enzyme activity in obese and lean Zucker rats: a developmental study. J Nutr. 1983;113(4):921–5.

    CAS  PubMed  Google Scholar 

  80. Carter DA, Wobken JD, Dixit PK, et al. Immunoreactive insulin in rat salivary glands and its dependence on age and serum insulin levels. Exp Biol Med. 1995;209(3):245–50.

    Article  CAS  Google Scholar 

  81. Rocha EM, Carvalho CR, Saad MJ, et al. The influence of ageing on the insulin signalling system in rat lacrimal and salivary glands. Acta Ophthalmol Scand. 2003;81(6):639–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for useful early discussions with Louise Slade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. S. Breslin.

Ethics declarations

Conflict of Interest

Catherine Peyrot des Gachons and Paul A.S. Breslin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyrot des Gachons, C., Breslin, P.A.S. Salivary Amylase: Digestion and Metabolic Syndrome. Curr Diab Rep 16, 102 (2016). https://doi.org/10.1007/s11892-016-0794-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0794-7

Keywords

Navigation