Skip to main content

Advertisement

Log in

Expression Profile of MicroRNAs and mRNAs in Human Placentas From Pregnancies Complicated by Preeclampsia and Preterm Labor

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have emerged as key regulators of gene expression stability implicated in cell proliferation, apoptosis, and development, whereas their altered expression has been associated with various pathological disorders. The objective of this study was to assess the expression profile of miRNAs and their predicted target genes in placentas from patients with preeclampsia (PC) and preterm (PT) labor as compared to normal term (NT) pregnancies. Using microarray profiling of 820 miRNAs and 18,630 mRNA transcripts, the analysis indicated that 283 of these miRNAs and 9119 mRNAs were expressed in all placentas, of which the relative expression of 20 miRNAs (P <.05 and ≥1.5-fold) and 120 mRNAs (P <.05, and 2-fold cutoff) was differentially expressed in PT and PC as compared to NT. The expression of miR-15b, miR-181a, miR-200C, miR-210, miR-296–3p, miR-377, miR-483–5p, and miR-493 and a few of their predicted target genes: matrix metalloproteinases (MMP-1, MMP-9), a disintegrin and metalloproteinase domains (ADAM-17, ADAM-30), tissue inhibitor of metalloproteinase 3 (TIMP-3); suppressor of cytokine signaling 1 (SOCS1); Stanniocalcin (STC2); corticotropin-releasing hormone (CRH), CRH-binding protein (CRHBP); and endothelin-2 (EDN2) were validated in these cohorts using real-time polymerase chain reaction (PCR), some displaying an inverse correlation with the expression of their predicted target genes. Functional analysis indicated that the products of these genes regulate cellular activities considered critical in normal placental functions and those affected by PC and PT labor. In conclusion, the results provide further evidence that placentas affected by PC and PT labor display an altered expression of a number of miRNAs with potential regulatory functions on the expression of specific target genes whose altered expression and function have been associated with these pregnancy complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Baumwell S, Karumanchi SA. Pre-eclampsia: clinical manifestations and molecular mechanisms. Nephron Clin Pract. 2007;106(2):C72–C81.

    Article  PubMed  Google Scholar 

  2. DeFranco E, Teramo K, Muglia L. Genetic influences on preterm birth. Semin Reprod Med. 2007;25(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  3. Dildy GA 3rd, Belfort MA, Smulian JC. Preeclampsia recurrence and prevention. Semin Perinatol. 2007;31(3):135–141.

    Article  PubMed  Google Scholar 

  4. Faye-Petersen OM. The placenta in preterm birth. J Clin Pathol. 2008;61(12):1261–1275.

    Article  CAS  PubMed  Google Scholar 

  5. Genc MR, Schantz-Dunn J. The role of gene-environment interaction in predicting adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2007;21(3):491–504.

    Article  PubMed  Google Scholar 

  6. Gilbert JS, Nijland MJ, Knoblich P. Placental ischemia and cardiovascular dysfunction in preeclampsia and beyond: making the connections. Expert Rev Cardiovasc Ther. 2008;6(10):1367–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    PubMed  PubMed Central  Google Scholar 

  8. Holst D, Garnier Y. Preterm birth and inflammation-The role of genetic polymorphisms. Eur J Obstet Gynecol Reprod Biol. 2008;141(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pennell CE, Jacobsson B, Williams SM, et al. Genetic epidemiologic studies of preterm birth: guidelines for research. Am J Obstet Gynecol. 2007;196(2):107–118.

    Article  PubMed  Google Scholar 

  10. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winn VD, Gormley M, Paquet AC, et al. Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology. 2009;150(1):452–462.

    Article  CAS  PubMed  Google Scholar 

  12. Barton JR, Sibai BM. Prediction and prevention of recurrent preeclampsia. Obstet Gynecol. 2008;112(2 Pt 1):359–372.

    Article  PubMed  Google Scholar 

  13. Enquobahrie DA, Meller M, Rice K, Psaty BM, Siscovick DS, Williams MA. Differential placental gene expression in preeclampsia. Am J Obstet Gynecol. 2008;199(5):566–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gack S, Marme A, Marme F, et al. Preeclampsia: increased expression of soluble ADAM 12. J Mol Med. 2005;83(11):887–896.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta AK, Hasler P, Holzgreve W, Hahn S. Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia? Semin Immunopathol. 2007;29(2):163–167.

    Article  CAS  PubMed  Google Scholar 

  16. Han JY, Kim YS, Cho GJ, et al. Altered gene expression of caspase-10, death receptor-3 and IGFBP-3 in preeclamptic placentas. Mol Cells. 2006;22(2):168–174.

    CAS  PubMed  Google Scholar 

  17. Hawfield A, Freedman BI. Pre-eclampsia: the pivotal role of the placenta in its pathophysiology and markers for early detection. Ther Adv Cardiovasc Dis. 2009;3(1):65–73.

    Article  PubMed  Google Scholar 

  18. LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9(6):480–485.

    Article  CAS  PubMed  Google Scholar 

  19. Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc Res. 2008;75(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  20. Nejatizadeh A, Stobdan T, Malhotra N, Pasha MA. The genetic aspects of pre-eclampsia: achievements and limitations. Biochem Genet. 2008;46(7–8):451–479.

    Article  CAS  PubMed  Google Scholar 

  21. Okazaki S, Sekizawa A, Purwosunu Y, Farina A, Wibowo N, Okai T. Placenta-derived, cellular messenger RNA expression in the maternal blood of preeclamptic women. Obstet Gynecol. 2007;110(5):1130–1136.

    Article  CAS  PubMed  Google Scholar 

  22. Lockwood CJ, Krikun G, Caze R, Rahman M, Buchwalder LF, Schatz F. Decidual cell-expressed tissue factor in human pregnancy and its involvement in hemostasis and preeclampsia-related angiogenesis. Ann N Y Acad Sci. 2008;1127:67–72.

    Article  CAS  PubMed  Google Scholar 

  23. Rusterholz C, Hahn S, Holzgreve W. Role of placentally produced inflammatory and regulatory cytokines in pregnancy and the etiology of preeclampsia. Semin Immunopathol. 2007;29(2):151–162.

    Article  CAS  PubMed  Google Scholar 

  24. Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep. 2008;41(4):278–286.

    Article  CAS  PubMed  Google Scholar 

  25. Xia Y, Zhou CC, Ramin SM, Kellems RE. Angiotensin receptors, autoimmunity, and preeclampsia. J Immunol. 2007;179(6):3391–3395.

    Article  CAS  PubMed  Google Scholar 

  26. LaMarca BD, Alexander BT, Gilbert JS, et al. Pathophysiology of hypertension in response to placental ischemia during pregnancy: a central role for endothelin? Gend Med. 2008;5(Suppl A):S133–S138.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Menon R. Spontaneous preterm birth, a clinical dilemma: etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand. 2008;87(6):590–600.

    Article  PubMed  Google Scholar 

  28. Nesin M. Genetic basis of preterm birth. Front Biosci. 2007;12:115–124.

    Article  CAS  PubMed  Google Scholar 

  29. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006;25(46):6163–6169.

    Article  CAS  PubMed  Google Scholar 

  31. Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet. 2008;9(11):831–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hagen JW, Lai EC. microRNA control of cell-cell signaling during development and disease. Cell Cycle. 2008;7(15):2327–2332.

    Article  CAS  PubMed  Google Scholar 

  34. Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25(46):6202–6210.

    Article  CAS  PubMed  Google Scholar 

  35. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008;7(17):2643–2646.

    Article  CAS  PubMed  Google Scholar 

  37. Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–3118.

    Article  CAS  PubMed  Google Scholar 

  38. Lee YS, Dutta A. MicroRNAs in Cancer. Annu Rev Pathol. 2008;4:199–227.

    Article  CAS  Google Scholar 

  39. Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54(3):482–490.

    Article  CAS  PubMed  Google Scholar 

  40. Donker RB, Mouillet JF, Nelson DM, Sadovsky Y. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 2007;13(4):273–279.

    Article  CAS  PubMed  Google Scholar 

  41. Montenegro D, Romero R, Kim SS, et al. Expression patterns of microRNAs in the chorioamniotic membranes: a role for microRNAs in human pregnancy and parturition. J Pathol. 2009;217(1):113–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196(3):261–266.

    Article  PubMed  CAS  Google Scholar 

  43. Pan Q, Luo X, Toloubeydokhti T, Chegini N. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod. 2007;13(11):797–806.

    Article  CAS  PubMed  Google Scholar 

  44. Pan Q, Luo X, Chegini N. Genomic and proteomic profiling I: leiomyomas in African Americans and Caucasians. Reprod Biol Endocrinol. 2007;5:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pan Q, Luo X, Toloubeydokhti T, Chegini N. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod. 2007;13(11):797–806.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 2009;200(6):661E1–E7.

    Article  CAS  Google Scholar 

  47. Carty DM, Delles C, Dominiczak AF. Novel biomarkers for predicting preeclampsia. Trends Cardiovasc Med. 2008;18(5):186–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cockle JV, Gopichandran N, Walker JJ, Levene MI, Orsi NM. Matrix metalloproteinases and their tissue inhibitors in preterm perinatal complications. Reprod Sci. 2007;14(7):629–645.

    Article  CAS  PubMed  Google Scholar 

  49. Eastabrook G, Hu Y, von Dadelszen P. The role of decidual natural killer cells in normal placentation and in the pathogenesis of preeclampsia. J Obstet Gynaecol Can. 2008;30(6):467–476.

    Article  PubMed  Google Scholar 

  50. Muhle RA, Pavlidis P, Grundy WN, Hirsch E. A high-throughput study of gene expression in preterm labor with a subtractive microarray approach. Am J Obstet Gynecol. 2001;185(3):716–724.

    Article  CAS  PubMed  Google Scholar 

  51. Sitras V, Paulssen RH, Gronaas H, et al. Differential placental gene expression in severe preeclampsia. Placenta. 2009;30(5):424–433.

    Article  CAS  PubMed  Google Scholar 

  52. Tromp G, Kuivaniemi H, Romero R, et al. Genome-wide expression profiling of fetal membranes reveals a deficient expression of proteinase inhibitor 3 in premature rupture of membranes. Am J Obstet Gynecol. 2004;191(4):1331–1338.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008;22(12):4126–4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Corn PG. Hypoxic regulation of miR-210: shrinking targets expand HIF-1’s influence. Cancer Biol Ther. 2008;7(2):265–267.

    Article  CAS  PubMed  Google Scholar 

  55. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009;69(3):1221–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fasanaro P, D’Alessandra Y, Di SV, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283(23):15878–15883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7(2):255–264.

    Article  CAS  PubMed  Google Scholar 

  58. Law AY, Lai KP, Lui WC, Wan HT, Wong CK. Histone deacetylase inhibitor-induced cellular apoptosis involves stanniocalcin-1 activation. Exp Cell Res. 2008;314(16):2975–2984.

    Article  CAS  PubMed  Google Scholar 

  59. Xiao LJ, Yuan JX, Song XX, Li YC, Hu ZY, Liu YX. Expression and regulation of stanniocalcin 1 and 2 in rat uterus during embryo implantation and decidualization. Reproduction. 2006;131(6):1137–1149.

    Article  CAS  PubMed  Google Scholar 

  60. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008;75(2):346–359.

    Article  CAS  PubMed  Google Scholar 

  61. Soleymanlou N, Jurisica I, Nevo O, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005;90(7):4299–4308.

    Article  CAS  PubMed  Google Scholar 

  62. Spencer K, Vereecken A, Cowans NJ. Maternal serum ADAM12s as a potential marker of trisomy 21 prior to 10 weeks of gestation. Prenat Diagn. 2008;28(3):209–211.

    Article  CAS  PubMed  Google Scholar 

  63. Stone AL, Kroeger M, Sang QX. Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). J Protein Chem. 1999;18(4):447–465.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu H, Leung PC, MacCalman CD. Expression of ADAMTS-5/implantin in human decidual stromal cells: regulatory effects of cytokines. Hum Reprod. 2007;22(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  65. Anton L, Merrill DC, Neves LAA, et al. The Uterine placental bed Renin-Angiotensin system in normal and preeclamptic pregnancy. Endocrinology. 2009;150(9):4316–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Choong ML, Yang HH, McNiece I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol. 2007;35(4):551–564.

    Article  CAS  PubMed  Google Scholar 

  67. Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE. 2008;3(7):e2557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Xia H, Qi Y, Ng SS, et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun. 2009;380(2):205–210.

    Article  CAS  PubMed  Google Scholar 

  69. Grammatopoulos DK. Placental corticotrophin-releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J Neuroendocrinol. 2008;20(4):432–438.

    Article  CAS  PubMed  Google Scholar 

  70. Wang J, Qiu Q, Haider M, Bell M, Gruslin A, Christians JK. Expression of pregnancy-associated plasma protein A2 during pregnancy in human and mouse. J Endocrinol. 2009;202(3):337–345.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Mayor-Lynn MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayor-Lynn, K., Toloubeydokhti, T., Cruz, A.C. et al. Expression Profile of MicroRNAs and mRNAs in Human Placentas From Pregnancies Complicated by Preeclampsia and Preterm Labor. Reprod. Sci. 18, 46–56 (2011). https://doi.org/10.1177/1933719110374115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110374115

Keywords

Navigation