Skip to main content
Log in

Computer assisted study of nanostructured microporous materials

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We report here the results of our computational studies on porous catalysts to bring out the catalytic role played by nanostructures. We present two typical case studies where the molecular dynamic (MD) and quantum chemical (QC) techniques have revealed the important structural aspects involved in the functioning of nanostructured microporous materials. The central role played by the exchanged metal cations of zeolite A in the molecular sieving of nitrogen and oxygen was studied by MD calculations. The results indicated that the mobility of the exchanged cations which are dependent on temperature causes the separation of nitrogen and oxygen molecules. The real time visualization of the dynamic behavior of the exchanged cations during the MD process aids the understanding of this intriguing process occurring inside the micropores of the zeolites. The controlled pore opening of hydrated VPI-5 molecular sieve by careful removal of water leads to a large one dimensional channel. The possibility of anchoring organometallics, namely porphyrins with ‘enzyme-like’ active sites were studied using QC calculations. The analysis of the 3-d contours of electron density and molecular electrostatic potential maps corresponding to various porphyrin systems and the cluster models representing VPI-5 framework brought out the probable locations for porphyrins inside VPI-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Y. Chen and T.F. Degnan, Chem. Eng. Prog., Feb., 32 (1988).

  2. H. Hamada, Y. Kintaichi, T. Yoshinari, M. Tabata, M. Sasaki, and T. Ita, Catal. Today, 17, 111. (1993)

    Article  CAS  Google Scholar 

  3. W. Holderich, M. Hesse, and F. Naumann, Angew. Chem. Int. Ed. Engl., 27 226 (1988).

    Article  Google Scholar 

  4. R.V. Jasra, N.V. Choudary, and S.G.T. Bhat, Sep. Sci. Technol., 26 885. (1991)

    Article  CAS  Google Scholar 

  5. G.A. Stucky, Science, 247 (1990) 669.

    Article  CAS  Google Scholar 

  6. A. Miyamoto, T. Hattori, and T. Inui, Appl. Surface Sci., 60/61 660 (1992); A.. Miyamoto, R. Yamauchi, and M. Kubo, Appl. Surface Sci., 75 51 (1994).

    Article  Google Scholar 

  7. A. Miyamoto, T. Hattori, and T. Inui, Physica C, 190 93 (1991).

    Article  CAS  Google Scholar 

  8. A. Miyamoto, K. Takeichi, T. Hattori, M. Kubo, and T. Inui, Jpn. J. Appl. Phys., 31 4463 (1992).

    Article  CAS  Google Scholar 

  9. A. Miyamoto, K. Matsuba, M. Kubo, K. Kawamura, and T. Inui, Chemistry Lett., 2055(1991); A.Miyamoto, M. Kubo, K. Matsuba, and T. Inui, In: Computer Aided Innovation of New Materials II, M. Doyama et al. (Eds.), p. 1025, Elsevier, Amsterdam, (1993); A. Miyamoto, K. Kagawa, M. Kubo, K. Matsuba, and T. Inui, ibid. 1993, p.1013.

  10. P. Demontis, G.B. Suffiitti, S. Quartieri, E.S. Fois, and A. Gamba, Zeolites, 7 522 (1987).

    Article  CAS  Google Scholar 

  11. P. Santikary, S. Yashonath, and G. Ananthakrishna, J. Phys. Chem., 96 10469 (1992) and references therein.

    Article  CAS  Google Scholar 

  12. J.O. Titiloye, S.C. Parker, F.S. Stone, and C.R.A. Catlow, J. Phys. Chem., 95 4038 (1991) and references therein.

    Article  CAS  Google Scholar 

  13. J.B. Nicholas, F.R. Trouw, J. E. Mertz, L.E.Iton, and A.J. Hopfinger, J. Phys. Chem., 97 4149 (1993) and references therein.

    Article  CAS  Google Scholar 

  14. A. Miyamoto, H. Himei, Y. Oka, E. Maruya, M. Katagiri, R. Vetrivel, and M. Kubo, Catal. Today (in press).

  15. A. Miyamoto, H. Himei, E. Maruya, M. Katagiri, R. Vetrivel, and M. Kubo, Proc. Int. Symp. Acid-Base Catalysis 11, Dec. 2–4, 1993, Sapporo, Japan (in press).

  16. J. Sauer, Chem. Rev., 89 199. (1989)

    Article  CAS  Google Scholar 

  17. S. Beran. In: Theoretical Aspects of Heterogeneous Catalysis, J.B. Moffat (Ed.), p. 160, van Nostrand Reinhold, New York, (1990).

    Google Scholar 

  18. E. Kassab, K. Seiti, and M. Allavena, J. Phys. Chem., 95 9425 (1991).

    Article  CAS  Google Scholar 

  19. E.H. Teunissen, R.A. van Santen, A.P.J. Jansen, and F.B. van Duijneveldt, J. Phys. Chem., 97 203 (1993).

    Article  CAS  Google Scholar 

  20. S. Prasad and R. Vetrivel, J. Phys. Chem., 98 1579 (1994).

    Article  CAS  Google Scholar 

  21. K. Kawamura, in: Introduction to Molecular Simulations, I. Okada and E. Osawa (Eds.), Kaibun-do, Tokyo, 1989, Chapters 6 and 7.

  22. W. Kohn and L.J. Sham, Phys. Rev., A140 1133 (1965).

    Article  Google Scholar 

  23. B. Delley, J. Chem. Phys., 92 508 (1990).

    Article  CAS  Google Scholar 

  24. M. Kubo and A. Miyamoto, in: Computer Aided Innovation of New Materials II”, M. Doyama et al. (Eds.), Elsevier, Amsterdam, 1993, p.295.

    Google Scholar 

  25. D.W. Breck and J.V. Smith: Sci. Amer. 200, 85 (1959).

    Article  Google Scholar 

  26. L.B. McCusker, Ch. Baerlocher, E. Jahn, and M. Bulow: Zeolites 11, 308 (1991).

    Article  CAS  Google Scholar 

  27. Y. W. Chan and R.B. Wilson, ACS Prep. Div. Petr. Chem., 33, 453 (1988).

    CAS  Google Scholar 

  28. R.F. Parton, L. Uytterhoeven, and P.A. Jacobs, Stud. Surface Sci. Catal., 59, 395 (1991).

    Article  CAS  Google Scholar 

  29. M. Nakamura, T. Tatsumi, and H. Tominaga, Bull. Chem. Soc. Jpn., 63, 3334 (1990).

    Article  CAS  Google Scholar 

  30. R. Parton, D. De Vos, and P.A. Jacobs. In: Zeolites Microporous Solids: Synthesis, Structure and Reactivity, E.G. Derouane et al. (Eds.), NATO ASI Ser. C, p. 555, Kluwer Academic Publishers, Amsterdam, (1992).

    Google Scholar 

  31. W.R. Scheidt, in: The Porphyrins, Vol. III, D. Dolphin (Ed.), Academic Press, 1978, p. 463.

  32. J. Tornasi. In: Chemical Applications of Atomic and Molecular Electrostatic Potentials, P. Politzer and D.G. Truhlar (Eds.), p. 151, Plenum Press, New York, (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

on leave from: National Chemical Laboratory, Pune - 411008, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, A., Katagiri, M., Kubo, M. et al. Computer assisted study of nanostructured microporous materials. Res. Chem. Intermed. 21, 151–166 (1995). https://doi.org/10.1163/156856795X00143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856795X00143

Keywords

Navigation