Skip to main content
Log in

Electron transfer, 151. Decomposition of peroxynitrite as catalyzed by copper(II)

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The decomposition of peroxynitrite in aqueous solution at pH 9.8–11.1 is catalyzed by copper(II) at the 10–7–10–6 M level. In the presence of added ammonia (0.03 M) or imidazole (0.005 M), reaction rates were as much as 160 times as great as those in copper-free systems. Catalysis was strongly inhibited by glycine, 2,2-bipyridyl, and EDTA. The yield of nitrite from the decomposition, [NO¯2]/[O=NOO¯]taken = 0.26, did not vary significantly with pH or [CuII]. Variation of reaction rates with [H+] and [CuII] is consistent with partition of the catalyst into an acidic form, (cat)HA (pKA 10.2–10.5), a dimer, (catHA)2, and a basic form (cat)A; only the first of these is active. Both transformations are taken to be initiated by CuII-induced homolysis of the O—O bond in peroxynitrite, yielding the reactive intermediate, a species of the type CuIII(OH). The latter may react further with peroxynitrite (ultimately yielding NO¯2 and O2) or with nitrite (yielding NO¯3). It is further suggested that catalytic activity of the type observed requires a substitution-labile CuII(OH2) function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See, for example: J. S. Stamler, D. J. Singel and J. Loscalzo, Science 258, 1898 (1992)

    Google Scholar 

  2. J. S. Beckman and W. H. Koppenol, Am.J.Physiol. 271 Cell Physiol. 40, C1424, (1996).

    Google Scholar 

  3. Reviews: J. A. Fee and J. S. Valentine, in: Superoxide and Superoxide Dismutase, A. M. Michelson, J. M. McCord and I. Fridovich (Eds), p. 19. Academic Press, New York (1979).

    Google Scholar 

  4. (b) J. S. Valentine and D. N. de Freitas, J.Chem.Ed. 62, 990 (1985).

  5. R. E. Huie and S. Padmaja, Free Redical Res.Commun. 97, 6664 (1993).

    Google Scholar 

  6. T. Logager and K. Sehested, J.Phys.Chem. 97, 6664 (1993).

    Google Scholar 

  7. G. Merenyi, J. Lind, S. Goldstein and G. Czapski, Chem.Res.Toxicol. 11, 712 (1998).

    Google Scholar 

  8. J. A. Beckman, J. Chen, H. Ischiropoulos and J. P. Crow, Methods Enzymol. 233, 229 (1994).

    Google Scholar 

  9. J.-H. Tsai, J. G. Harrison, J. C. Martin, T. P. Hamilton, M. van der Woerd, M. J. Jablonski and J. S. Beckman, J.Am.Chem.Soc. 116, 4415 (1994).

    Google Scholar 

  10. H. Ischiropoulos, L. Zhu and J. S. Beckman, Arch.Biochem.Biophys. 298, 446 (1992).

    Google Scholar 

  11. L. Zhu, C. Gunn and J. S. Beckman, Arch.Biochem.Biophys. 298, 452 (1992).

    Google Scholar 

  12. N. Hogg, J. Joseph and B. Kalyanaraman, Arch.Biochem.Biophys. 314, 153 (1994).

    Google Scholar 

  13. D. Steinberg, S. Parathasarthy, T. E. Carew, J. C. Khoo and J. L. Witstum, New.Engl.J.Med. 320, 915 (1989).

    Google Scholar 

  14. See, for example: R. Radi, J. S. Beckman, K. M. Bush and B. A. Freeman, J.Biol.Chem. 266, 4244 (1991). (b) W. A. Pryor, X. Jin and G. L. Squadrito, Proc.Natl.Acad.Sci. USA 91, 11173 (1994). (c) D. Bartlett, D. F. Church, P. L. Bounds and W. H. Koppenol, Free Radicals Biol.Med. 18, 85 (1995). (d) J. C. Niles, J. S. Wishnok and S. R. Tannenbaum, J.Am.Chem.Soc. 123, 12147 (2001).

    Google Scholar 

  15. E. Halfpenny and P. I. Robinson, J.Chem.Soc.A., 928 (1952).

  16. M. N. Hughes, H. G. Nicklin and W. A. C. Sackrule, J.Chem.Soc.A, 3722 (1971).

  17. S. Goldstein and G. Czapski, Inorg.Chem. 34, 4041 (1995).

    Google Scholar 

  18. D. J. Benton and P. Moore, J. Chem. Soc. A, 3179 (1970).

  19. A. M. Al-Ajlouni, P. C. Paul and E. S. Gould, Inorg.Chem. 32, 1434 (1998).

    Google Scholar 

  20. A. M. Al-Ajlouni and E. S. Gould, Inorg.Chem. 36, 362 (1997).

    Google Scholar 

  21. C. L. Wilson and D. W. Wilson (Eds), in: Comprehensive Analytical Chemistry, Vol. IB, p. 351. Elsevier, Amsterdam (1960).

    Google Scholar 

  22. A. M. Al-Ajlouni and E. S. Gould, Inorg.Chem. 35, 7892 (1996).

    Google Scholar 

  23. M.-Y. Wu, S. J. Paton, Y-T. Fanchiang, E. Gelerinter and E. S. Gould, Inorg.Chem. 17, 15 326 (1978). (b) S. K. Chandra and E. S. Gould, Inorg.Chem. 35, 2136 (1996).

    Google Scholar 

  24. D. A. Buckingham, I. I. Creaser and A. M. Sargeson, Inorg.Chem. 9, 655 (1970).

    Google Scholar 

  25. R. H. Lane, F. A. Sedor, M. J. Gilroy, P. F. Eisenhardt, J. P. Bennett, Jr., R. X. Ewall and L. E. Bennett, Inorg.Chem. 16, 93 (1977).

    Google Scholar 

  26. S. Pfeiffer, A. C. F. Gorren, K. Schmidt, E. R. Werner, B. Hansert, D. S. Bohle and B. Mayer, J.Biol.Chem. 272, 3465 (1997).

    Google Scholar 

  27. YSI 50 Manual (Part A50040 D), p. 19. Yellow Springs Instrument Company, Yellow Springs, Ohio (1988).

  28. W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropolous and J. H. Beckman, Chem.Res.Toxicol. 4, 834 (1992).

    Google Scholar 

  29. S. K. Ghosh and E. S. Gould, Inorg.Chem. 27, 4228 (1988); 28, 3651 (1989).

    Google Scholar 

  30. R. M. Smith and A. E. Martell, in: Critical Stability Constants. Plenum Press, New York, Vol. 4, p. 40 (1976); Vol. 6, p. 247 (1989).

    Google Scholar 

  31. A. O. Gubeli, J. Hebert, P. A. Cote and R. Taillon, Helv.Chim.Acta 53, 186 (1970).

    Google Scholar 

  32. J. W. Coddington, J. K. Hurst and S. V. Lymar, J.Am.Chem.Soc. 121, 2438 (1999).

    Google Scholar 

  33. J. O. Edwards and J. C. Plumb, Progr.Inorg.Chem. 41, 599 (1994).

    Google Scholar 

  34. J. W. Coddington, S. Wherland and J. K. Hurst, Inorg.Chem. 40, 528 (2001).

    Google Scholar 

  35. G. G. A. Balavione, Y. V. Geletii and D. Bejan, Nitric Oxide, Biology and Chemistry 1, 507 (1997).

    Google Scholar 

  36. R. Shimanovich, S. Hannah, V. Lynch, N. Gerasimchuk, T. D. Mody, D. Magda, J. Sessler and J. T. Groves, J.Am.Chem.Soc. 123, 3613 (2001).

    Google Scholar 

  37. S. Herold, T. Matsui and Y. Watanabe, J.Am.Chem.Soc. 123, 4085 (2001).

    Google Scholar 

  38. <nt>See, for example</nt>, R. A. Sheldon and J. K. Kochi, in: Metal-Catalyzed Oxidation of Organic Compounds, pp. 34-49. Academic Press, New York (1981).

    Google Scholar 

  39. B. J. Hathaway, in: ComprehensiveCoordination Chemistry, G. Wilkinson (Ed.), Vol. 5, pp. 745-750. Pergamon, Oxford, UK (1987). (b) W. Levason and M. D. Spicer, Coord.Chem.Rev. 76, 45 (1987).

    Google Scholar 

  40. E. T. Gray, R. W. Taylor and D. W. Margerum, Inorg.Chem. 16, 3047 (1977).

    Google Scholar 

  41. (a) Bioorganic Chemistry of Copper. K. D. Karlin and Z. Tyeklar (Eds), pp. 213-394. Chapman and Hall, New York (1993).

  42. W. Kaim and J. Rail, Angew.Chem.Int.Ed.Eng. 35, 43 (1996).

    Google Scholar 

  43. N. Katajima and Y. Moro-aka, Chem.Rev. 94, 737 (1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babich, O.A., Gould, E.S. Electron transfer, 151. Decomposition of peroxynitrite as catalyzed by copper(II). Research on Chemical Intermediates 28, 575–583 (2002). https://doi.org/10.1163/15685670260373335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/15685670260373335

Keywords

Navigation