Advertisement

Initial correlated states for the generalized Kadanoff–Baym Ansatz without adiabatic switching-on of interactions in closed systems

  • Miroslav Hopjan
  • Claudio VerdozziEmail author
Open Access
Regular Article
  • 86 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

We reconsider the Generalized Kadanoff–Baym Ansatz (GKBA) approximation for non-equilibrium Green’s functions and extend it to self-consistently define an equilibrium correlated (within GKBA) state in closed systems. The advantage of the proposed prescription is to avoid the preparation of the initial equilibrium correlated state via adiabatic switching-on of the correlations. A simple model system, namely a Hubbard-dimer, is used to illustrate aspects of the computational implementation and performance of the new scheme.

References

  1. 1.
    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962) Google Scholar
  2. 2.
    L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965) Google Scholar
  3. 3.
    K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems (Springer, Berlin, 2013) Google Scholar
  4. 4.
    G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013) Google Scholar
  5. 5.
    M. Hopjan, C. Verdozzi, First Principles Approaches to Spectroscopic Properties of Complex Materials (Springer, Berlin, Heidelberg, 2014) Google Scholar
  6. 6.
    N. Schlünzen, J.P. Joost, M. Bonitz, Phys. Rev. B 96, 117101 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    N.E. Dahlen, R. van Leeuwen, Phys. Rev. Lett. 98, 153004 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    K. Balzer, M. Bonitz, R. van Leeuwen, A. Stan, N.E. Dahlen, Phys. Rev. B 79, 245306 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    P. Myöhänen, A. Stan, G. Stefanucci, R. van Leeuwen, Europhys. Lett. 84, 67001 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Phys. Rev. Lett. 103, 176404 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Phys. Rev. B 82, 155108 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    M. Hopjan, D. Karlsson, S. Ydman, C. Verdozzi, C.-O. Almbladh, Phys. Rev. Lett. 116, 236402 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    N. Schlünzen, S. Hermanns, M. Bonitz, C. Verdozzi, Phys. Rev. B 93, 035107 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    N. Schlünzen, M. Bonitz, Contrib. Plasma Phys. 56, 5 (2016) CrossRefGoogle Scholar
  15. 15.
    N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, M. Bonitz, Phys. Rev. B 95, 165139 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    P. Danielewicz, Ann. Phys. (NY) 152, 305 (1984) ADSCrossRefGoogle Scholar
  17. 17.
    M. Schüler, J. Berakdar, Y. Pavlyukh, Phys. Rev. B 93, 054303 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    M. Schüler, Y. Pavlyukh, Phys. Rev. B 97, 115164 (2018) ADSCrossRefGoogle Scholar
  19. 19.
    P. Lipavsky, V. Spicka, B. Velicky, Phys. Rev. B 34, 6933 (1986) ADSCrossRefGoogle Scholar
  20. 20.
    M. Bonitz, Quantum Kinetic Theory (Teubner, Stuttgart, 1998) Google Scholar
  21. 21.
    B. Velicky, A. Kalvova, V. Spicka, Phys. Rev. B 77, 041201(R) (2008) ADSCrossRefGoogle Scholar
  22. 22.
    S. Hermanns, K. Balzer, M. Bonitz, Phys. Scr. T 151, 014036 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    S. Hermanns, N. Schlünzen, M. Bonitz, Phys. Rev. B 90, 125111 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    S. Latini, E. Perfetto, A.-M. Uimonen, R. van Leeuwen, G. Stefanucci, Phys. Rev. B 89, 075306 (2014) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Bar Lev, D.R. Reichman, Eur. Phys. Lett. 113, 46001 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    V. Spicka, B. Velicky, A. Kalvova, Fortschr. Phys. 65, 1700032 (2017) CrossRefGoogle Scholar
  27. 27.
    M. Hopjan, G. Stefanucci, E. Perfetto, C. Verdozzi, Phys. Rev. B 98, 041405(R) (2018) ADSCrossRefGoogle Scholar
  28. 28.
    E. Perfetto, D. Sangalli, A. Marini, G. Stefanucci, J. Phys. Chem. Lett. 9, 1353 (2018) Google Scholar
  29. 29.
    E. Viñas Boström, A. Mikkelsen, C. Verdozzi, E. Perfetto, G. Stefanucci, Nano Lett. 18, 785 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    A. Kalvova, B. Velicky, V. Spicka, Eur. Phys. Lett. 121, 67002 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    D.C. Langreth, J.W. Wilkins, Phys. Rev. B 6, 3189 (1972) ADSCrossRefGoogle Scholar
  32. 32.
    D. Karlsson, R. van Leeuwen, E. Perfetto, G. Stefanucci, Phys. Rev. B 98, 115148 (2018) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Physics and European Theoretical Spectroscopy Facility (ETSF)Lund UniversityLundSweden

Personalised recommendations