Skip to main content
Log in

Autaptic modulation-induced neuronal electrical activities and wave propagation on network under electromagnetic induction

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Based on an improved HR neuron model, the effects of electrical and chemical autapses on the firing activities of single neurons are studied, and the wave propagation in forward feedback neural network is also discussed by considering autapstic regulation under different intensities of electromagnetic induction. It is found that the electrical activities of single neuron can be changed by exerting excitatory or inhibitory of electrical and chemical autapses. With different feedback gains of electromagnetic induction current, membrane potential shows the oscillatory solutions and steady states. Under the condition of different autapse or electromagnetic induction, the propagation of electrical activities caused by the central neuron is transformed in the forward feedback network. Moreover, the spatial synchronization of the network will be changed by choosing different coupling intensities and feedback gains. It is proved that the electrical and chemical autapses play a significant role in firing modes of single neuron and the wave propagation of the forward feedback networks under the electromagnetic induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Guantes, G.G. de Polavieja, Phys. Rev. E 71, 011911 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Tsumoto et al., Neurocomputing 69, 293 (2006)

    Article  Google Scholar 

  3. D.Q. Wei, X.S. Luo, Y.L. Zou, Eur. Phys. J. B 63, 279 (2008)

    Article  ADS  Google Scholar 

  4. A. Shilnikov, Nonlinear Dyn. 68, 305 (2012)

    Article  Google Scholar 

  5. J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  6. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  7. L.L. Lu et al., Sci. China Tech. Sci., https://doi.org/10.1007/s11431-017-9217-x

  8. Y. Xu et al., Neurocomputing 283, 196 (2018)

    Article  Google Scholar 

  9. A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Manjarrez et al., Neurosci. Lett. 326, 93 (2002)

    Article  Google Scholar 

  11. W. Wang, G. Perez, H.A. Cerderia, Phys. Rev. E 47, 2893 (1993)

    Article  ADS  Google Scholar 

  12. R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Zhang, Z.J. Cao, N.J. Wu, H.P. Ying, G. Hu, Phys. Rev. Lett. 94, 188301 (2005)

    Article  ADS  Google Scholar 

  14. B. Sancristóal, J.M. Sancho, J. Garcia-Ojalvo, Eur. Phys. J. Special Topics 187, 189 (2010)

    Article  ADS  Google Scholar 

  15. M. Gosak, M. Marko, M. Perc, Physica D 238, 506 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Zhan, G. Hu, J.Z. Yang, Phys. Rev. E 62, 2963 (2000)

    Article  ADS  Google Scholar 

  17. F. Li, C.N. Wang, J. Ma, Chin. Phys. B 22, 100502 (2013)

    Article  ADS  Google Scholar 

  18. L.J. Yang et al., Phys. Rev. E 86, 016209 (2012)

    Article  ADS  Google Scholar 

  19. G. Schmid, I. Goychuk, P. Hänggi, Europhys. Lett. 56, 22 (2001)

    Article  ADS  Google Scholar 

  20. Y. Gao, J. Wang, Phys. Rev. E 83, 2345 (2011)

    Article  Google Scholar 

  21. Q. Wang, M. Perc, Z. Duan, G. Chen, Chaos 19, 225 (2009)

    Google Scholar 

  22. Z.Q. Liu et al., Physica A 389, 2642 (2010)

    Article  ADS  Google Scholar 

  23. J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)

    Article  Google Scholar 

  24. J. Ma et al. Neurocomputing 167, 378 (2015)

    Article  Google Scholar 

  25. J.M. Bekkers, C.F. Stevens, Proc. Natl. Acad. Sci. USA 88, 7834 (1991)

    Article  ADS  Google Scholar 

  26. R. Saada et al., Curr. Biol. 19, 479 (2009)

    Article  Google Scholar 

  27. D.Q. Guo et al., Europhys. Lett. 114, 30001 (2016)

    Article  ADS  Google Scholar 

  28. L.F. Wang, K. Qiu, Y. Jia, Chin. Phys. B 26, 030503 (2017)

    Article  ADS  Google Scholar 

  29. C.N. Wang et al., Complexity 2017, 5436737 (2017)

    Google Scholar 

  30. Y. Xu et al., Sci. Rep. 7, 43452 (2017)

    Article  ADS  Google Scholar 

  31. Y. Xu et al., Chaos Soliton Frac. 104, 435 (2017)

    Article  ADS  Google Scholar 

  32. L. Lu et al., Complexity 2017, 7628537 (2017)

    Google Scholar 

  33. M.Y. Ge, Y. Jia, Y. Xu, L.J. Yang, Nonlinear Dyn. 91, 515 (2018)

    Article  Google Scholar 

  34. J.P. Baltanas, J.M. Caado, Phys. Rev. E 65, 041915 (2002)

    Article  ADS  Google Scholar 

  35. U.S. Thounaojam, P.R. Sharma, M.D. Shrimali, Eur. Phys. J. Special Topics 225, 17 (2016)

    Article  ADS  Google Scholar 

  36. J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett. 78, 2882 (1997)

    Article  ADS  Google Scholar 

  37. Y. Jiang, Phys. Rev. E 71, 057103 (2005)

    Article  ADS  Google Scholar 

  38. M. Perc, Chem. Phys. Lett. 410, 49 (2005)

    Article  ADS  Google Scholar 

  39. Q. Wang, Y.B. Gong, Y.A. Wu, Eur. Phys. J. B 88, 103 (2015)

    Article  ADS  Google Scholar 

  40. E. Yilmaz et al., Physica A 444, 538 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Yilmaz et al., Sci. China Tech. Sci. 59, 364 (2016)

    Article  Google Scholar 

  42. H.G. Gu, B. Jia, Y.Y. Li, G.R. Chen, Physica A 392, 1361 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Ma, X.L. Song, J. Tang, C.N. Wang, Neurocomputing 167, 378 (2015)

    Article  Google Scholar 

  44. K. Qiu et al., Sci. Rep. 7, 9890 (2017)

    Article  ADS  Google Scholar 

  45. Y.G. Yao, M. Yi, D.J. Hou, Int. J. Mod. Phys. B 31, 1750204 (2017)

    Article  ADS  Google Scholar 

  46. A.A.M. Yousif et al., Chin. Phys. B 27, 030501 (2018)

    Article  ADS  Google Scholar 

  47. Q.M. Pei et al., Phys. Rev. E 92, 012721 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  48. H.W. Wang et al., Chin. Phys. B. 26, 128702 (2017)

    Article  ADS  Google Scholar 

  49. Y.G. Yao, C.Z. Ma, C.J. Wang, M. Yi, R. Gui, Physica A 492, 1247 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  50. K.F. Gao, Y.J. Zhao, J. Phys. Chem. B 121, 2952 (2017)

    Article  Google Scholar 

  51. Y.G. Yao et al., Complexity 2018, 5632650 (2018)

    Google Scholar 

  52. Y.G. Yao, J. Ma, J. Cogn. Neurodyn. 12, 343 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Xu, Y., Zhang, Z. et al. Autaptic modulation-induced neuronal electrical activities and wave propagation on network under electromagnetic induction. Eur. Phys. J. Spec. Top. 227, 799–809 (2018). https://doi.org/10.1140/epjst/e2018-700141-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-700141-7

Navigation