Skip to main content

Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model

Abstract

We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H.Schulz, G.Ódor, G.Ódor, M.F.Nagy, Comp. Phys. Comm. 182, 1467 (2011)

    ADS  Article  Google Scholar 

  2. 2.

    J.M.Burgers, The Nonlinear Diffusion Equation (Riedel, Boston 1974)

  3. 3.

    D.Forster, Phys. Rev. A 16, 732 (1977)

    MathSciNet  ADS  Article  Google Scholar 

  4. 4.

    A.L.Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

  5. 5.

    T.Halpin-Healy, Y.-C.Zhang, Phys. Rep. 254, 215 (1995)

    ADS  Article  Google Scholar 

  6. 6.

    J.Krug, Adv. Phys. 46, 139 (1997)

    ADS  Article  Google Scholar 

  7. 7.

    M.Kardar, Phys. Rev. Lett. 55, 2923 (1985)

    ADS  Article  Google Scholar 

  8. 8.

    H.K.Janssen, B.Schmittmann, Z. Phys. B 63, 517 (1986)

    ADS  Article  Google Scholar 

  9. 9.

    H.van Beijeren, R.Kutner, H.Spohn, Phys. Rev. Lett. 54, 2056 (1985)

    MathSciNet  ADS  Article  Google Scholar 

  10. 10.

    T.Hwa, Phys. Rev. Lett. 69, 1552 (1992)

    ADS  Article  Google Scholar 

  11. 11.

    M.Kardar, Nucl. Phys. B 290, 582 (1987)

    MathSciNet  ADS  Article  Google Scholar 

  12. 12.

    H.Rost, Z. Wahrsch. Verw. Gebiete 58, 41 (1981)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  13. 13.

    G.Ódor, Universality In Nonequilibrium Lattice Systems (World Scientific, 2008)

  14. 14.

    M.Schwartz, S.F.Edwards, Europhys. Lett. 20, 301 (1992)

    ADS  Article  Google Scholar 

  15. 15.

    E.Frey, U.C.Täuber, Phys. Rev. E 50, 1024 (1994)

    MathSciNet  ADS  Article  Google Scholar 

  16. 16.

    M.Lässig, Nucl. Phys. B 448, 559 (1995)

    ADS  Article  Google Scholar 

  17. 17.

    B.M.Forrest, L.H.Tang, Phys. Rev. Lett. 64, 1405 (1990)

    ADS  Article  Google Scholar 

  18. 18.

    E.Marinari, A.Pagnani, G.Parisi, J. Phys. A 33, 8181 (2000)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  19. 19.

    E.Marinari, A.Pagnani, G.Parisi, Z.Rácz, Phys. Rev. E 65, 026136 (2002)

    ADS  Article  Google Scholar 

  20. 20.

    H.C.Fogedby, Phys. Rev. Lett. 94, 195702 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    L.Canet, H.Chat, B.Delamotte, N.Wschebor, Phys. Rev. E 84, 061128 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    F.D.A.AaraoReis, Phys. Rev. E 72, 0322601 (2005)

    Google Scholar 

  23. 23.

    G.Ódor, B.Liedke, K.-H.Heinig, Phys. Rev. E 79, 021125 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    G.Ódor, B.Liedke, K.-H.Heinig, Phys. Rev. E 81, 031112 (2010)

    ADS  Article  Google Scholar 

  25. 25.

    M.Plischke, Z.Rácz, D.Liu, Phys. Rev. B 35, 3485 (1987)

    ADS  Article  Google Scholar 

  26. 26.

    P.Meakin, P.Ramanlal, L.M.Sander, R.C. Ball, Phys. Rev. A 34, 5091 (1986)

    ADS  Article  Google Scholar 

  27. 27.

    S.Wolfram, Rev. Mod. Phys. 55, 601 (1983)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  28. 28.

    M.Barma, M.D.Grynberg, R.B.Stinchcombe, J. Phys.: Condens. Matter 19, 065112 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    J.Kelling, G.Ódor, Phys. Rev. E 84, 061150 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    K.-H.Heinig, T.Müller, B.Schmidt, M.Strobel, W.Möller, Appl. Phys. A 77, 17 (2003)

    ADS  Article  Google Scholar 

  31. 31.

    L.Röntzsch, Ph.D. thesis (2007)

  32. 32.

    B.Liedke, Ph.D. thesis (2011)

  33. 33.

    M.Strobel, Ph.D. thesis (1999)

  34. 34.

    T.Müller, Ph.D. thesis (2005)

  35. 35.

    J.Kelling, Diploma thesis (2012)

  36. 36.

    K.Kawasaki, Phys. Rev. 145, 224 (1966)

    MathSciNet  ADS  Article  Google Scholar 

  37. 37.

    N.Metropolis, et al., J. Chem. Phys. 21, 1087 (1953)

    ADS  Article  Google Scholar 

  38. 38.

    S.Wolfram, A New Kind of Science (2002)

  39. 39.

    G.Ódor, B.Liedke, K.-H.Heinig, Phys. Rev. E 81, 051114 (2010)

    ADS  Article  Google Scholar 

  40. 40.

    G.Ódor, B.Liedke, K.-H.Heinig, J.Kelling, Appl. Surf. Sci. 258, 4186 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    T.Preis, et al., J. Comp. Phys. 228, 4468 (2009)

    ADS  MATH  Article  Google Scholar 

  42. 42.

    M.Weigel, J. Comput. Phys. 231, 3064 (2012)

    ADS  MATH  Article  Google Scholar 

  43. 43.

    M.Matsumoto, et al., J. Univ. Comp. Sci. 12, 672 (2006)

    Google Scholar 

  44. 44.

    TinyMT website http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/TINYMT/index.html

  45. 45.

    M.Henkel, J.D.Noh, M.Pleimling, Phys. Rev. E 85, 030102(R) (2012)

    ADS  Article  Google Scholar 

  46. 46.

    Y.Shim, J.G.Amar, Phys. Rev. B 71, APS, 125432 (2005)

    ADS  Article  Google Scholar 

  47. 47.

    M.E.J.Newman, G.T.Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)

  48. 48.

    V.Rosato, M.Guillope, B.Legrand, Phil. Mag. A 59, 321 (1989)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to J. Kelling, G. Ódor, M. F. Nagy, H. Schulz or K. -H. Heinig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kelling, J., Ódor, G., Nagy, M.F. et al. Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model. Eur. Phys. J. Spec. Top. 210, 175–187 (2012). https://doi.org/10.1140/epjst/e2012-01645-8

Download citation

Keywords

  • Graphic Processing Unit
  • Cellular Automaton
  • European Physical Journal Special Topic
  • Monte Carlo Step
  • Device Layer