Skip to main content
Log in

Modal decomposition and normal form for hydrodynamic flows: Examples from cellular flame patterns

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Spatio-temporal complexity of hydrodynamic flows may be reduced through modal decomposition, especially in systems with symmetries. The symmetries of the most significant modes can then be used to deduce normal form equations associated with the observed state. In turn, the normal form equations can be used to deduce bifurcations to and from the given state.

We illustrate this process using two spatio-temporal cellular states on a circular flame front. The first example contains a pair of uniformly rotating cells. Principle component analysis shows that two coherent structures capture most of the dynamics and suggests that the state is a broken-parity traveling mode. Other experimentally observed states, such as modulated rotating states and a heteroclinic cycle between two spatially orthonormal states result from secondary bifurcations from the rotating state. The second example, referred to as the hopping mode, visually appears to have significantly more complicated dynamics. However, modal decomposition shows that it consists of two parity broken states moving at different angular velocities. The corresponding normal form contains a codimension-three steady-state bifurcation leading to a homoclinic cycle whose spatio-temporal characteristics are similar to those of hopping states.

We use these examples to propose a methodology to combine coherent structures that form a single, possibly time-dependent entity which we refer to as a generalized coherent structure. The process can reduce the number of entities needed to expand complex spatio-temporal states.

The paper is dedicated to the memory of Michael Gorman, whose experiments on cellular flame fronts and relentless demands for better theoretical understanding of the patterns motivated the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications, New York, 1981)

  2. P.G. Drazin, W.H. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, 1981)

  3. M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, vol. 2 (New York: Springer-Verlag, New York, 1988)

  4. M. Gorman, M. elHamdi, K. Robbins, Combust. Sci. Technol. 98, 37 (1994)

    Article  Google Scholar 

  5. M. Gorman, M. elHamdi, K. Robbins, Combust. Sci. Technol. 98, 47 (1994)

    Article  Google Scholar 

  6. M. Gorman, M. elHamdi, K. Robbins, Combust. Sci. Technol. 98, 71 (1994)

    Article  Google Scholar 

  7. M. Gorman, M. elHamdi, K. Robbins, Combust. Sci. Technol. 98, 79 (1994)

    Article  Google Scholar 

  8. M. Gorman, C. Hamill, M. elHamdi, K. Robbins, Combust. Sci. Technol. 98, 25 (1994)

    Article  Google Scholar 

  9. Y.B. Zeldovich, Theory of Combustion and Detonation of Glass (Moscow: Academy of Sciences (USSR), Moscow, 1944)

  10. F.A. Williams, Combustion Theory (Menlo Park, CA: Benjamin Cummins, Menlo Park, 1985)

  11. G. Joulin, P. Clavin, Acta Astronautica 3, 223 (1976)

    Article  Google Scholar 

  12. G. Joulin, P. Clavin, Combust. Flame 35, 139 (1979)

    Article  Google Scholar 

  13. G. Joulin, G. Sivashinsky, Combust. Sci. Technol. 31, 75 (1983)

    Article  Google Scholar 

  14. P. Clavin, G. Joulin, J. Phys. Lett. 44, L1 (1983)

    Article  Google Scholar 

  15. A. Bayliss, B. Matkowsky, SIAM J. Appl. Math. 52, 396 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bayliss, B. Matkowsky, H. Riecke, Physica D 74, 1 (1994)

    Article  ADS  MATH  Google Scholar 

  17. L. Sirovich, Quart. Appl. Math. 45, 561 (1987)

    MathSciNet  ADS  MATH  Google Scholar 

  18. L. Sirovich, Quart. Appl. Math. 45, 573 (1987)

    MathSciNet  Google Scholar 

  19. L. Sirovich, Quart. Appl. Math. 45, 583 (1987)

    MathSciNet  Google Scholar 

  20. W. Mullins, R. Sekerka, J. Appl. Phys. 34, 323 (1963)

    Article  ADS  Google Scholar 

  21. W. Mullins, R. Sekerka, J. Appl. Phys. 35, 444 (1964)

    Article  ADS  Google Scholar 

  22. A. Simon, J. Bechhoefer, A. Libchaber, Phys. Rev. Lett. 61, 2574 (1988)

    Article  ADS  Google Scholar 

  23. G. Faivre, S. DeCheveigne, C. Guthmann, P. Kurowski, Europhys. Lett. 9, 779 (1989)

    Article  ADS  Google Scholar 

  24. F. Daviaud, M. Bonetti, M. Dubois, Phys. Rev. A 42, 3388 (1990)

    Article  ADS  Google Scholar 

  25. D. Bensimon, P. Kolodner, C. Surko, H. Williams, V. Croquette, J. Fluid Mech. 217, 441 (1990)

    Article  ADS  Google Scholar 

  26. M. Rabaud, S. Michalland, Y. Couder, Phys. Rev. Lett. 64, 184 (1990)

    Article  ADS  Google Scholar 

  27. P. Coullet, R. Goldstein, G. Gunaratne, Phys. Rev. Lett. 63, 1954 (1989)

    Article  ADS  Google Scholar 

  28. R. Goldstein, G. Gunaratne, L. Gil, Phys. Rev. A 41, 5731 (1990)

    Article  ADS  Google Scholar 

  29. R. Goldstein, G. Gunaratne, L. Gil, P. Coullet, Phys. Rev. A 43, 6700 (1991)

    Article  ADS  Google Scholar 

  30. P. Coullet, G. Iooss, Phys. Rev. Lett. 64, 866 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. G. Dangelmayr, D. Armbruster, Proc. London Math. Soc. 46, 517 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Dangelmayr, E. Knobloch, Nonlinearity 4, 399 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A. Palacios, G. Gunaratne, M. Gorman, K. Robbins, Chaos 7, 463 (1997)

    Article  ADS  MATH  Google Scholar 

  34. A. Palacios, G. Gunaratne, M. Gorman, K. Robbins, Phys. Rev. E 57, 5958 (1998)

    Article  ADS  Google Scholar 

  35. I. Melbourne, P. Chossat, M. Golubitsky, Proc. Roy Soc. Edinburgh 113A, 315 (1989)

    Article  MathSciNet  Google Scholar 

  36. M. Krupa, I. Melbourne, Ergod. Th. & Dynam. Sys. 15, 121 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Field, Trans. Amer. Math. Soc. 259, 185 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Krupa, J. Nonlin. Sci. 7, 129 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Palacios, M. Gorman, G. Gunaratne, Chaos 9, 755 (1999)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Gunaratne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelley, J.D., Gunaratne, G.H., Palacios, A. et al. Modal decomposition and normal form for hydrodynamic flows: Examples from cellular flame patterns. Eur. Phys. J. Spec. Top. 204, 119–131 (2012). https://doi.org/10.1140/epjst/e2012-01556-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01556-8

Keywords

Navigation