Skip to main content

A Brief History of Simple Invariant Solutions in Turbulence

  • Chapter
  • First Online:
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

When studying fluid mechanics in terms of instability, bifurcation and invariant solutions one quickly finds out how little can be done by pen and paper. For flows on sufficiently simple domains and under sufficiently simple boundary conditions, one may be able to predict the parameter values at which the base flow becomes unstable and the basic properties of the secondary flow. On more complicated domains and under more realistic boundary conditions, such questions can usually only be addressed by numerical means. Moreover, for a wide class of elementary parallel shear flows the base flow remains stable in the presence of sustained turbulent motion. In such flows, secondary solutions often appear with finite amplitude and completely unconnected to the base flow. Only using techniques from computational dynamical systems can such behaviour be explained. Many of these techniques, such as for the detection and classification of bifurcations and for the continuation in parameters of equilibria and time-periodic solutions, were developed in the late 1970s for dynamical systems with few degrees of freedom. The application to fluid dynamics or, to be more precise, to spatially discretized Navier–Stokes flow, is far from straightforward. In this historical review chapter, we follow the development of this field of research from the valiant naivety of the early 1980s to the open challenges of today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some remarks can be found in the 2011 Woods Hole Lecture Notes [22]. See also later work by Chantry et al. [23] on the validity of Waleffe’s flow setup as a model for the inner region of channel flow.

  2. 2.

    This presentation is, in fact, an anachronism. The original paper by Sánchez et al. [28] focuses on periodic solutions. The unified presentation, with the phase condition differentiating between periodic and equilibrium solutions, can be found in a recent review by Sánchez and Net [33].

References

  1. Benjamin, T.B.: Bifurcation phenomena in steady flows of a viscous fluid. i. theory. Proc. R. Soc. A 359, 1–26 (1978a)

    Article  MathSciNet  Google Scholar 

  2. Benjamin, T.B.: Bifurcation phenomena in steady flows of a viscous fluid. ii. experiments. Proc. R. Soc. A 359, 27–43 (1978b)

    Article  MathSciNet  Google Scholar 

  3. Benjamin, T.B., Mullin, T.: Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A: Math. Phys. 377, 221–249 (1981)

    Article  MathSciNet  Google Scholar 

  4. Busse, F.H., Clever, R.M.: Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319–335 (1979)

    Article  Google Scholar 

  5. Orszag, S.A., Patterson, G.S.: Numerical simulation of 3-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76 (1972)

    Article  Google Scholar 

  6. Kim, J., Moin, P., Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  Google Scholar 

  7. Doedel, E.: AUTO: a program for the automatic bifurcation analysis for autonomous systems. Congr. Numer. 30, 265–284 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Classics in applied mathematics. SIAM (1979)

    Google Scholar 

  9. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  10. Bomans, L., Roose, D.: Benchmarking the ipcs/2 hypercube multiprocessor. Concurr. Pract. Ex 1, 3–18 (1989)

    Article  Google Scholar 

  11. Saltzman, B.: Finite amplitude free convection as an initial value problem i. J Atmos Sci 19, 329–342 (1962)

    Article  Google Scholar 

  12. Osinga, H.: Interview with K Andrew Cliffe, University of Nottingham, UK for DSWebmagazine (2010). https://dsweb.siam.org/The-Magazine/Article/welcome-to-academia-after-30-years-in-industry-1

  13. Riley, D.: Professor Andrew Cliffe (eulogy) (2014). https://www.nottingham.ac.uk/mathematics/news/professor-andrew-cliffe.aspx

  14. Cliffe, K.A., Mullin, T.: A numerical and experimental study of anomalous modes in the Taylor experiment. J. Fluid Mech. 153, 243–258 (1985)

    Article  Google Scholar 

  15. Cliffe KA (1996) ENTWIFE (release 6.3) reference manual. Oxford, UK: Harwell Laboratory. http://ww.swmath.org/software/4255

  16. Brindley, J., Kaas-Petersen, C., Spence, A.: Path-following methods in bifurcation problems. Physica D 34, 456–461 (1989)

    Article  Google Scholar 

  17. van Veen, L.: Interview with Masato Nagata for DSWebmagazine (2017). https://dsweb.siam.org/The-Magazine/The-Magazine/All-Issues/interview-with-masato-nagata

  18. Nagata, M.: Three-dimensional tertiary motions in a plane shear layer. J. Fluid Mech. 135, 1–26 (1983)

    Article  Google Scholar 

  19. Nagata, M.: On wavy instabilities of Taylor vortex flow between corotating cylinders. J. Fluid Mech. 188, 585–598 (1988)

    Article  MathSciNet  Google Scholar 

  20. Nagata, M.: Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519–527 (1990)

    Article  MathSciNet  Google Scholar 

  21. Waleffe, F.: Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 4140–4143 (1998)

    Article  Google Scholar 

  22. Waleffe, F., Ma, C., Potter, S.: Exact coherent states. In: Proceedings of the 2011 Program in Geophysical Fluid Dynamics. Woods Hole Oceanographic Institution (2011)

    Google Scholar 

  23. Chantry, M., Tuckerman, L.S., Barkley, D.: Turbulent-laminar patterns in shear flows without walls. J. Fluid Mech. 791, R8 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kawahara, G., Kida, S.: Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291–300 (2001)

    Article  MathSciNet  Google Scholar 

  25. Faisst, H., Eckhardt, B.: Traveling waves in pipe flow. Phys. Rev. Lett. 91(224), 502 (2003)

    Google Scholar 

  26. Wedin, H., Kerswell, R.R.: Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333–371 (2004)

    Article  MathSciNet  Google Scholar 

  27. Hof, B., van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R., Waleffe, F.: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 1594–1598 (2004)

    Article  Google Scholar 

  28. Sánchez, J., Net, M., García-Archilla, B., Simó, C.: Newton-Krylov continuation of periodic orbits for Navier-Stokes flows. J. Comput. Phys. 201(1), 13–33 (2004)

    Article  MathSciNet  Google Scholar 

  29. de Lozar, A., Mellibovski, F., Avila, M., Hof, B.: Edge states in pipe flow experiments. Phys. Rev. Lett. 108(214), 502 (2012)

    Google Scholar 

  30. Saad, Y., Schultz, M.H.: GMRES - a generalized minimal residual algorithm for solving nonsymmetric linear-systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  31. Krylov, A.N.: On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined. Izvestija AN SSSR (News of Academy of Sciences of the USSR), Otdel mat i estest nauk 7(4), 491–539 (1931). see also A. N. Krylov: a short biography by Mike Botchev at http://www.staff.science.uu.nl/~vorst102/kryl.html

  32. Tuckerman, L.S.: Steady state solving via Stokes preconditioning – recursion relations for elliptic operators. In: Proceedings of the Eleventh International Conference on Numerical Methods in Fluid Dynamics, pp. 573–577. Springer, Berlin (1989)

    Google Scholar 

  33. Sánchez Umbría, J., Net, M.: Numerical continuation methods for large-scale dissipative dynamical systems. Eur. Phys. J-ST 225, 2465 (2016)

    Article  Google Scholar 

  34. Constantin, P., Foias, P., Manley, O.P., Temam, R.: Determining modes and fractal dimension of turbulent flows. J. Fluid Mech. 150, 427–440 (1985)

    Article  MathSciNet  Google Scholar 

  35. Viswanath, D.: Recurrent motions within plane couette turbulence. J. Fluid Mech. 580, 339–358 (2007)

    Article  MathSciNet  Google Scholar 

  36. Gibson, J.F.: Channelflow: A spectral Navier-Stokes simulator in C++. Technical report, U. New Hampshire, Channelflow.org (2014)

    Google Scholar 

  37. Willis, A.P.: The Openpipeflow Navier–Stokes solver. SoftwareX 6, 124–127 (2017). http://arxiv.org/abs/1705.03838

    Article  Google Scholar 

  38. Eckhardt, B., Scheider, T.M., Hof, B., Westerweel, J.: Turbulence transition in pipe flow. Ann. Rev. Fluid Mech. 39, 447–468 (2007)

    Article  MathSciNet  Google Scholar 

  39. Kawahara, G., Uhlmann, M., van Veen, L.: The significance of simple invariant solutions in turbulent flows. Ann. Rev. Fluid Mech. 44, 203–222 (2012)

    Article  MathSciNet  Google Scholar 

  40. Salinger, A., Romero, L., Pawlowski, R., Wilkes, E., Lehoucq, R., Burroughs, B., Bou-Rabee, N.: LOCA: Library of Continuation Algorithms (2001). http://www.cs.sandia.gov/loca/

  41. Pawlowski, R.P., Salinger, A.G., Shadid, J.N., Mountziaris, T.J.: Bifurcation and stability analysis of laminar isothermal counterflowing jets. J. Fluid Mech. 551, 117–139 (2006)

    Article  MathSciNet  Google Scholar 

  42. Mullin, T., Kerswell, R.R. (eds.): Laminar–Turbulent Transition and Finite-Amplitude Solutions Fluid Mechanics and its Applications. Fluid mechanics and its applications (2005). https://www.newton.ac.uk/event/hrt, https://perso.limsi.fr/duguet/Cargese/master.pdf, https://www.kitp.ucsb.edu/activities/transturb17

  43. Khapko, T., Kreilos, T., Schlatter, P., Duguet, Y., Eckhardt, B., Henningson, D.S.: Edge states as mediators of bypass transition in boundary-layer flows. J. Fluid Mech. 801, R2 (2016)

    Article  MathSciNet  Google Scholar 

  44. Suri, B., Tithof, J., Grigoriev, R.O., Schatz, M.F.: Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett. 118(114), 501 (2017)

    Google Scholar 

  45. Hwang, Y., Willis, A.P., Cossu, C.: Invariant solutions of minimal large-scale structures in turbulent channel flow for \(re_{\tau }\) up to 1000. J. Fluid Mech. 802, R1 (2016)

    Google Scholar 

  46. Sasaki, E., Kawahara, G., Sekimoto, A., Jiménez, J.: Unstable periodic orbits in plane Couette flow with the Smagorinsky model. J. Phys. Conf. Ser. 708(012), 003 (2016)

    Google Scholar 

  47. Sekimoto, A., Jiménez, J.: Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shear flow. J. Fluid Mech. 827, 225–249 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Sebastian Altmeyer, Andrew Hazel, Björn Hof, Genta Kawahara, Rich Kerswell, Masato Nagata and Fabian Waleffe for sharing their ideas and memories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennaert van Veen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Veen, L. (2019). A Brief History of Simple Invariant Solutions in Turbulence. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics