Skip to main content
Log in

A cosmological model for corrugated graphene sheets

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Defects play a key role in the electronic structure of graphene layers flat or curved. Topological defects in which an hexagon is replaced by an n-sided polygon generate long range interactions that make them different from vacancies or other potential defects. In this work we review previous models for topological defects in graphene. A formalism is proposed to study the electronic and transport properties of graphene sheets with corrugations as the one recently synthesized. The formalism is based on coupling the Dirac equation that models the low energy electronic excitations of clean flat graphene samples to a curved space. A cosmic string analogy allows to treat an arbitrary number of topological defects located at arbitrary positions on the graphene plane. The usual defects that will always be present in any graphene sample as pentagon–heptagon pairs and Stone-Wales defects are studied as an example. The local density of states around the defects acquires characteristic modulations that could be observed in scanning tunnel and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gregorieva, A.A. Firsov, Nature 438, 197 (2005)

    Google Scholar 

  • Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Google Scholar 

  • P.R. Wallace, Phys. Rev. 71, 622 (1947); J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)

    Google Scholar 

  • G.V. Semenoff, Phys. Rev. Lett. 53, 2449 (1984); D.V. Khveshchenko, Phys. Rev. Lett. 87, 48246802 (2001); ibid., Phys. Rev. Lett. 87, 48246802 (2001)

  • J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 172 (1992); ibid., Nucl. Phys. B 406, 771 (1993)

    Google Scholar 

  • J. González, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993)

    Google Scholar 

  • M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Google Scholar 

  • See the contribution by A.K. Geim in this volume

  • S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 16801 (2006)

    Google Scholar 

  • A.F. Morpurgo, F. Guinea, Phys. Rev. Lett. 97, 196804 (2006)

    Google Scholar 

  • D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006)

    Google Scholar 

  • A. Cortijo, M.A.H. Vozmediano, preprint cond-mat/0603717 (2006) (to be published)

  • A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B (2006) (in press)

  • A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Nature 430, 870 (2004)

    Google Scholar 

  • L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 76, 971 (1996)

    Google Scholar 

  • N. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, D. Tomanek, Phys. Rev. Lett. 91, 237204 (2003)

    Google Scholar 

  • A.V. Rode, E.G. Gamaly, A.G. Christy, J.G. FitzGerald, S.T. Hyde, R.G. Elliman, B. Luther-Davies, A.I. Veinger, J. Androulakis, J. Giapintzakis, Phys. Rev. B 70, 054407 (2004)

    Google Scholar 

  • M. Ge, K. Sattler, Chem. Phys. Lett. 220, 192 (1994)

    Google Scholar 

  • A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Nature 388, 451 (1997)

    Google Scholar 

  • S. Iijima, T. Ichihashi, Y. Ando, Nature 356, 776 (1992)

    Google Scholar 

  • H. Terrones, M. Terrones, J.L. Morán-López, Curr. Sci. 81, 1011 (2001)

    Google Scholar 

  • J.A. Jaszczaka, G.W. Robinson, S. Dimovskic, Y. Gogotsic, Carbon 41, 2085 (2003)

  • B. An, S. Fukuyama, K. Yokogawaa, M. Yoshimura, M. Egashira, Y. Korai, I. Mochida, Appl. Phys. Lett. 78, 3696 (2001)

  • P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004)

    Google Scholar 

  • A. Cortijo, M.A.H. Vozmediano, Proceedings of the 14th European Conference for Mathematics in Industry (Springer-Verlag, 2006) preprint cond-mat/0603717 (to appear)

  • V.A. Osipov, D.V. Kolesnikov, Rom. J. Phys. 50, 457 (2005)

    Google Scholar 

  • A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000)

  • A.N. Aliev, M.H. Ortacsu, N. Ozdemir, Class. Quantum. Grav. 14 (1997)

  • N.D. Birrell, P.C.W. Davis, Quantum Fields in Curved Space (Cambridge University Press, 1982)

  • A. Cortijo, M.A.H. Vozmediano (in progress)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cortijo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortijo, A., Vozmediano, M. A cosmological model for corrugated graphene sheets. Eur. Phys. J. Spec. Top. 148, 83–89 (2007). https://doi.org/10.1140/epjst/e2007-00228-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00228-2

Keywords

Navigation