Skip to main content

A Sheet of Graphene: Quantum Field in a Discrete Curved Space

  • Conference paper
  • First Online:
Relativity and Gravitation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

The dynamics of electrons in a sheet of graphene can be described as a quantum field living in a discrete space—the graphene honeycomb lattice. As this space can be curved in various ways, the system offers a fascinating tool for studying and simulating the impacts of non-trivial geometries on quantum fields living in it. Local and global deformations as well as defects of the lattice can be mapped, via a discrete differential geometry, onto curvature and torsion in the continuous analog model. This allows for physical simulation and observation of quantum evolution and scattering in curved geometry and interaction with torsion. Time-dependent lattice perturbations, such as sound waves, can be interpreted as dynamical geometry and mimic gravitational waves. The immanent quantum character of the lattice structure—composed of carbon atoms—can be used for proposing a physical simulator of quantum geometry. We discuss the main ideas constituting these analogies, the latter being the topic of our ongoing project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, G., Jia, J., Xue, Q., Li, L.: Atomic-scale imaging and manipulation of ridges on epitaxial graphene on 6H-SiC(0001). Nanotechnology 20, 355701 (2009). doi:10.1088/0957-4484/20/35/355701

    Article  ADS  Google Scholar 

  2. Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A 276(1365), 238 (1963). doi:10.1098/rspa.1963.0204

    Article  ADS  Google Scholar 

  3. Montorsi, A. (ed.): The Hubbard Model. World Scientific, Singapore (1992)

    Google Scholar 

  4. Giuliani, A., Mastropietro, V., Porta, M.: Lattice quantum electrodynamics for graphene. Ann. Phys. (N.Y.) 327, 461 (2012). doi:10.1016/j.aop.2011.10.007

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Katsnelson, M., Novoselov, K.: Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143, 3 (2007). doi:10.1016/j.ssc.2007.02.043

    Article  ADS  Google Scholar 

  6. Szpak, N., Schützhold, R.: Quantum simulator for the Schwinger effect with atoms in bichromatic optical lattices. Phys. Rev. A 84, 050101(R) (2011). doi:10.1103/PhysRevA.84.050101

    Article  ADS  Google Scholar 

  7. Szpak, N., Schützhold, R.: Optical lattice quantum simulator for quantum electrodynamics in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect. New J. Phys. 14, 035001 (2012). doi:10.1088/1367-2630/14/3/035001

    Article  ADS  Google Scholar 

  8. Bobenko, A., Schröder, P., Sullivan, J., Ziegler, G. (eds.): Discrete Differential Geometry, Oberwolfach Seminars, vol. 38. Birkhäuser, Basel (2008)

    Google Scholar 

  9. Bir, G., Pikus, G.: Symmetry and Strain-Induced Effects in Semiconductors. Wiley, New York (1974)

    Google Scholar 

  10. Chamon, C.: Solitons in carbon nanotubes. Phys. Rev. B 62, 2806 (2000). doi:10.1103/PhysRevB.62.2806

    Article  ADS  Google Scholar 

  11. Vozmediano, M., Katsnelson, M., Guinea, F.: Gauge fields in graphene. Phys. Rep. 496, 109 (2010). doi:10.1016/j.physrep.2010.07.003

    Article  ADS  MathSciNet  Google Scholar 

  12. Kleinert, H.: Gauge Fields in Condensed Matter. Differential Geometry of Defects and Gravity with Torsion, vol. 4. World Scientific, Singapore (1989)

    Google Scholar 

  13. de Juan, F., Cortijo, A., Vozmediano, M.: Dislocations and torsion in graphene and related systems. Nucl. Phys. B 828, 625 (2010). doi:10.1016/j.nuclphysb.2009.11.012

    Article  ADS  MATH  Google Scholar 

  14. Mesaros, A., Sadri, D., Zaanen, J.: Parallel transport of electrons in graphene parallels gravity. Phys. Rev. B 82, 073405 (2010). doi:10.1103/PhysRevB.82.073405

    Article  ADS  Google Scholar 

  15. Marecki, P.: Propagation of sound on line vortices in superfluids: role of ergoregions. J. Phys. A: Math. Theor. 45, 295501 (2012). doi:10.1088/1751-8113/45/29/295501

    Article  Google Scholar 

  16. Marecki, P., Schützhold, R.: Whispering gallery like modes along pinned vortices. ArXiv e-prints [ arXiv:1110.5928[cond-mat.other]] (2011)

  17. Rodrigues, J., Peres, N., Lopes dos Santos, J.: Scattering by linear defects in graphene: a continuum approach. Phys. Rev. B 86, 214206 (2012). doi:10.1103/PhysRevB.86.214206

    Article  ADS  Google Scholar 

  18. Warner, J., Young, N., Kirkland, A., Briggs, G.: Resolving strain in carbon nanotubes at the atomic level. Nat. Mater. 10, 958 (2011). doi:10.1038/nmat3125

    Article  ADS  Google Scholar 

  19. Boada, O., Celi, A., Latorre, J., Lewenstein, M.: Dirac equation for cold atoms in artificial curved spacetimes. New J. Phys. 13, 035002 (2011). doi:10.1088/1367-2630/13/3/035002

    Article  ADS  Google Scholar 

  20. Ablowitz, M., Ilan, B., Schonbrun, E., Piestun, R.: Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures. Phys. Rev. E 74, 035601(R) (2006). doi:10.1103/PhysRevE.74.035601

    Article  ADS  MathSciNet  Google Scholar 

  21. Bahr, B., Dittrich, B., Ryan, J.: Spin foam models with finite groups. ArXiv e-prints [ arXiv:1103.6264[gr-qc]] (2011)

  22. Oriti, D.: The microscopic dynamics of quantum space as a group field theory. ArXiv e-prints [ arXiv:1110.5606[hep-th]] (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikodem Szpak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Szpak, N. (2014). A Sheet of Graphene: Quantum Field in a Discrete Curved Space. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_82

Download citation

Publish with us

Policies and ethics