Skip to main content
Log in

Emergence of F(R) gravity-analogue due to defects in graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show that the defects of graphene, which lead to the non-equality between positive curvature of fermions with anti-parallel spins and negative curvature of fermions with parallel spins, imply an emergence of F(R) gravity. By increasing the number of atoms at each defect, the order of scalar curvature increases and the shape of F(R) gravity changes. This gravity has a direct relation with energy-momentum tensor and leads to motion of electrons in a special path and hence producing superconductivity. Also, for some special angles, parallel spins become close to each other and repel to each other. In that condition, the shape of F(R) gravity changes and electrons can’t continue to move in an initial path and return. Consequently, superconductivity disappears and one new conductivity appears in opposite direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Haefner, J. Schindler, N. Weik, T. Mayer, S. Balakrishnan, R. Narayanan, S. Bera, F. Evers, Phys. Rev. Lett. 113, 186802 (2014)

    Article  ADS  Google Scholar 

  2. A. Dasgupta, S. Bera, F. Evers, M.J. van Setten, Phys. Rev. B 85, 125433 (2012)

    Article  ADS  Google Scholar 

  3. J. Gonzalez, J. Herrero, Nucl. Phys. B 2, 426 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. D.E. Fernandes, N. Engheta, M.G. Silveirinha, Phys. Rev. B 90, 041406 (R)

  5. A. Sepehri, Phys. Lett. A 380, 1401 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 90, 124083 (2014)

    Article  ADS  Google Scholar 

  7. S.D. Odintsov, V.K. Oikonomou, E.N. Saridakis, arXiv:1501.06591 [gr-qc] (2015)

  8. S.D. Odintsov, V.K. Oikonomou, arXiv:1504.06866 [gr-qc] (2015)

  9. S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D 71, 043503 (2005)

    Article  ADS  Google Scholar 

  10. S. Capozziello, V.F. Cardone, V. Salzano, Phys. Rev. D 78, 063504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 84, 124059 (2011)

    Article  ADS  Google Scholar 

  12. C. Bambi, A. Cardenas-Avendano, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 93, 064016 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. F.S.N. Lobo, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 91, 124001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Bambi, M. Ghasemi-Nodehi, D. Rubiera-Garcia, Phys. Rev. D 92, 044016 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Sepehri, Phys. Lett. B 748, 328335 (2015)

    Article  Google Scholar 

  16. A. Sepehri, F. Rahaman, S. Capozziello, A. Farag Ali, A. Pradhan, Eur. Phys. J. C 76, 231 (2016)

    Article  ADS  Google Scholar 

  17. A. Sepehri, Phys. Lett. A 380, 2247 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Sepehri, M.R. Setare, S. Capozziello, arXiv:1512.04840 [hep-th] (2015)

  19. J. Bagger, N. Lambert, Phys. Rev. D 77, 065008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Gustavsson, Nucl. Phys. B 811, 66 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pei-Ming Ho, Yutaka Matsuo, JHEP 0806, 105 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sunil Mukhi, Constantinos Papageorgakis, JHEP 0805, 085 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Kluson, JHEP 0011, 016 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. R.C. Myers, JHEP 12, 022 (1999)

    Article  ADS  Google Scholar 

  25. N.R. Constable, R.C. Myers, O. Tafjord, JHEP 0106, 023 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.A. Tseytlin, arXiv:hep-th/9908105 (1999)

  27. Chong-Sun Chu, Douglas J. Smith, JHEP 0904, 097 (2009)

    Article  ADS  Google Scholar 

  28. B. Sathiapalan, N. Sircar, JHEP 0808, 019 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. N.R. Constable, R.C. Myers, O. Tafjord, Phys. Rev. D 61, 106009 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106, 231101 (2011)

    Article  ADS  Google Scholar 

  31. C. de Rham, L. Heisenberg, Phys. Rev. D 84, 043503 (2011)

    Article  ADS  Google Scholar 

  32. A. Emir Gumrukcuoglu, Chunshan Lin, Shinji Mukohyama, JCAP 1111, 030 (2011)

    Article  Google Scholar 

  33. L. Heisenberg, R. Kimura, K. Yamamoto, Phys. Rev. D 89, 103008 (2014)

    Article  ADS  Google Scholar 

  34. M. Cruz, E. Rojas, Class. Quantum Grav. 30, 115012 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Pincak, J. Smotlacha, Eur. Phys. J. B 86, 480 (2013)

    Article  ADS  Google Scholar 

  36. G. Dmitrakakis, SPIE newsroom (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Pincak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepehri, A., Pincak, R. & Ali, A. Emergence of F(R) gravity-analogue due to defects in graphene. Eur. Phys. J. B 89, 250 (2016). https://doi.org/10.1140/epjb/e2016-70428-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70428-4

Keywords

Navigation