Skip to main content
Log in

Isomers as a probe of shell evolution in exotic nuclei

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The formation of isomeric states in atomic nuclei is sensitive to the underlying shell structure, which alters in accordance with variation in the number of constituent protons or neutrons and with changes of major configurations through particle–hole excitations inside one nucleus. In this article, I will overview some of the effects of the monopole component of proton–neutron interactions on the energy and decay properties of characteristic isomers in neutron-rich \(N=80\) nuclei below the doubly magic nucleus \(^{132}\)Sn. I will also discuss the presence of a deformed sub-shell closure at \(N=104\) and its impact on the emergence of K isomers in neutron-rich dysprosium isotopes around double midshell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. M.G. Mayer, Phys. Rev. 75, 1969–1970 (1949)

    Article  ADS  Google Scholar 

  2. O. Haxel, J.H.D. Jensen, H.E. Suess, Phys. Rev. 75, 1766–1766 (1949)

    Article  ADS  Google Scholar 

  3. T. Nakamura, H. Sakurai, H. Watanabe, Prog. Part. Nucl. Phys. 97, 53–122 (2017)

    Article  ADS  Google Scholar 

  4. O. Sorlin, M.G. Porquet, Prog. Part. Nucl. Phys. 61(2), 602–673 (2008)

    Article  ADS  Google Scholar 

  5. T. Otsuka, T. Suzuki, M. Honma et al., Phys. Rev. Lett. 104, 012501 (2010)

    Article  ADS  Google Scholar 

  6. T. Otsuka, A. Gade, O. Sorlin et al., Rev. Mod. Phys. 92, 015002 (2020)

    Article  ADS  Google Scholar 

  7. E. Caurier, G. Martínez-Pinedo, F. Nowacki et al., Rev. Mod. Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  8. T. Otsuka, Y. Tsunoda, J. Phys. G Nucl. Part. Phys. 43, 024009 (2016)

    Article  ADS  Google Scholar 

  9. K. Heyde, J. Jolie, J. Moreau et al., Nucl. Phys. A 466, 189–226 (1987)

    Article  ADS  Google Scholar 

  10. A.P. Zuker, Phys. Lev. Lett. 90, 042502 (2003)

    Article  ADS  Google Scholar 

  11. T. Otsuka, T. Suzuki, J.D. Holt et al., Phys. Rev. Lett. 105, 032501 (2010)

    Article  ADS  Google Scholar 

  12. J.D. Holt, T. Otsuka, A. Schwenk, T. Suzuki, J. Phys. G Nucl. Part. Phys. 39, 085111 (2012)

    Article  ADS  Google Scholar 

  13. P. Walker, G. Dracoulis, Energy traps in atomic nuclei. Nature 399, 35 (1999)

    Article  ADS  Google Scholar 

  14. Y. Yano, Nucl. Instrum. Methods Phys. Res. B 261, 1009 (2007)

    Article  ADS  Google Scholar 

  15. H. Watanabe, Eur. Phys. J. A 55, 19 (2019)

    Article  ADS  Google Scholar 

  16. H. Watanabe, G. Lorusso, S. Nishimura et al., Phys. Rev. Lett. 113, 042502 (2014)

    Article  ADS  Google Scholar 

  17. H. Watanabe, C.X. Yuan, G. Lorusso et al., Phys. Lett. B 823, 136766 (2021)

    Article  Google Scholar 

  18. J. Genevey, J.A. Pinston, C. Foin et al., Phys. Rev. C 63, 054315 (2001)

    Article  ADS  Google Scholar 

  19. A. Kerek, A. Luukko, M. Grecescu et al., Nucl. Phys. A 172(3), 603–617 (1971)

    Article  ADS  Google Scholar 

  20. http://www.nndc.bnl.gov/ensdf/

  21. G. Bertsch, J. Borysowicz, H. McManus et al., Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  22. T. Otsuka, Y. Tsunoda, T. Abe et al., Phys. Rev. Lett. 123, 222502 (2019)

    Article  ADS  Google Scholar 

  23. K. Schreckenbach, P. Liaud, R. Kossakowski et al., Phys. Lett. B 349, 427 (1995)

    Article  ADS  Google Scholar 

  24. Q. Zhi, E. Caurier, J.J. Cuenca-García et al., Phys. Rev. C 87, 025803 (2013)

    Article  ADS  Google Scholar 

  25. P.A. Söderström, P. Walker, J. Wu et al., Phys. Lett. B 762, 404–408 (2016)

    Article  ADS  Google Scholar 

  26. H. Watanabe, G. Zhang, K. Yoshida et al., Phys. Lett. B 760, 641 (2016)

    Article  ADS  Google Scholar 

  27. G. Dracoulis, Phys. Scr. 2013, 014015 (2013)

    Article  Google Scholar 

  28. G. Dracoulis, G. Lane, F. Kondev et al., Phys. Lett. B 635(4), 200–206 (2006)

    Article  ADS  Google Scholar 

  29. T.L. Khoo, J.C. Waddington, M.W. Johns, Can. J. Phys. 51(22), 2307–2328 (1973)

    Article  ADS  Google Scholar 

  30. F. Kondev, G. Dracoulis, T. Kibédi, Atom. Data Nucl. Data Tables 103–104, 50–105 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Professor K. Ogawa and Professor C.X. Yuan for valuable discussions on shell-model calculations. This work was supported by the National Natural Science Foundation of China (No. 12150710512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Watanabe.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H. Isomers as a probe of shell evolution in exotic nuclei. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01152-z

Navigation