Skip to main content
Log in

Multi-neutron-hole and core-excited configurations of isomeric states near the doubly-magic \(^{208}\)Pb

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The region of the nuclear chart with atomic number Z = 80–83 (Hg-Bi) and neutron number N = 118–126, which is the subject of many recent investigations, has revealed the presence of quite long-lived states at high excitation energy and spin. Some noteworthy results include the 8-ms, spin (51/2) isomer at about 8 MeV in 205Bi, and the 60-ns, spin 28 level at 13.67 MeV in 208Pb. The states in 205Bi and 208Pb have the longest half-life and the highest excitation energy of isomers above 7 MeV identified across the nuclear chart yet. The recently discovered isomers are exceptional in terms of half-life, excitation energy or spin, and are built on excitations of the 208Pb core, which is the heaviest doubly-magic nucleus. The properties of these isomers with multi-quasiparticle configurations, involving nucleons in predominantly high-j orbitals below and above the Z = 82 and N = 126 shell gaps, are challenging to reproduce through large-scale shell-model calculations owing to the constraints imposed by the large model space. These metastable states constitute the means to discriminate between and serve to improve the available nuclear effective interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Data from some of the work in this review are available from the corresponding author on reasonable request.

References

  1. J.M. Reid, K.G. McNeill, The photo-production of an isomeric state in \(^{207}\)Pb. Phil. Mag. 45, 957 (1954). https://doi.org/10.1080/14786440908520508

    Article  CAS  Google Scholar 

  2. D. Eccleshall, M.J.L. Yates, The \(h_{11/2}\) single proton hole state in \(^{207}\)Tl. Phys. Lett. 19, 301 (1965). https://doi.org/10.1016/0031-9163(65)90997-2

    Article  CAS  ADS  Google Scholar 

  3. G.H. Dulfer et al., Negative parity states in \(^{198}_{80}\)Hg\(_{118}\). Nucl. Phys. A 153, 121 (1970). https://doi.org/10.1016/0375-9474(70)90760-8

    Article  CAS  ADS  Google Scholar 

  4. H. Ton et al., Lifetimes of high-spin states in doubly even Pt and Hg isotopes. Nucl. Phys. A 153, 129 (1970). https://doi.org/10.1016/0375-9474(70)90761-X

    Article  CAS  ADS  Google Scholar 

  5. C. Günther et al., High-spin states in even hg nuclei and rotation alignment in \(^{198}\)Hg. Phys. Rev. C 15, 1298 (1977). https://doi.org/10.1103/PhysRevC.15.1298

    Article  ADS  Google Scholar 

  6. D.L. Mock et al., Photo-induced reactions at 20 MeV. Phys. Rev. 74, 1536 (1948). https://doi.org/10.1103/PhysRev.74.1536

    Article  CAS  ADS  Google Scholar 

  7. P. Euthymiou, P. Axel, Photoproduction of a 100-\(\mu \)sec isomer and its tentative assignment to Hg-201. Phys. Rev. 128, 274 (1962). https://doi.org/10.1103/PhysRev.128.274

    Article  ADS  Google Scholar 

  8. I. Uray et al., Excitation of \(12^{-}\) isomeric state of \(^{206}\)Tl by fast neutrons. Z. Phys. A 287, 51 (1978). https://doi.org/10.1007/BF01408360

    Article  CAS  ADS  Google Scholar 

  9. T.W. Conlon, M2 isomerism in the N = 123 isotones. Nucl. Phys. A 212, 531 (1973). https://doi.org/10.1016/0375-9474(73)90821-X

    Article  CAS  ADS  Google Scholar 

  10. M.G. Slocombe et al., A study of states in \(^{201,203}\)Tl using the (\(d, 3n\gamma \)) reaction: a new \(9/2^{-}\) band. Nucl. Phys. A 275, 166 (1977). https://doi.org/10.1016/0375-9474(77)90282-2

    Article  ADS  Google Scholar 

  11. I. Bergstrom, et al. Evidence for a 3.6 Minute Isomeric \(12^{-}\) State of the \(\pi h_{11/2}^{-1} \nu i_{13/2}^{-1}\) configuration in \(^{206}\)Tl and effective two-particle interactions. Z. Phys. A278, 257 (1976). https://doi.org/10.1007/BF01409176

  12. B. Fant et al., Investigation of the high-spin structure of \(^{200,202}\)Pb. Nucl. Phys. A 475, 338 (1987). https://doi.org/10.1016/0375-9474(87)90170-9

    Article  ADS  Google Scholar 

  13. A.R. Poletti et al., Structure of high-spin yrast states in \(^{205}\)Pb and \(^{206}\)Pb. Nucl. Phys. A 580, 43 (1994). https://doi.org/10.1016/0375-9474(94)90814-1

    Article  CAS  ADS  Google Scholar 

  14. R. Broda et al., Inelastic and transfer reactions in \(^{92}\)Mo\(+255\) MeV \(^{60}\)Ni collisions studied by \(\gamma \gamma \) coincidences. Phys. Lett. B 251, 245 (1990). https://doi.org/10.1016/0370-2693(90)90930-5

    Article  MathSciNet  CAS  ADS  Google Scholar 

  15. M. Pfutzner et al., New isotopes and isomers produced by the fragmentation of \(^{238}\)U at 1000 MeV/nucleon. Phys. Lett. 444B, 32 (1998). https://doi.org/10.1016/S0370-2693(98)01332-X

    Article  ADS  Google Scholar 

  16. I.Y. Lee, The Gammasphere. Nucl. Phys. A 520, c641 (1990). https://doi.org/10.1016/0375-9474(90)91181-P

    Article  ADS  Google Scholar 

  17. R. Janssens, F. Stephens, New physics opportunities at gammasphere. Nucl. Phys. News 6, 9 (1996). https://doi.org/10.1080/10506899609411095

    Article  ADS  Google Scholar 

  18. H.J. Kim, W.T. Milner, Short nuclear lifetime measurements via the pulse beam delayed-coincidence technique. Nucl. Instr. and Meth. 95, 429 (1971). https://doi.org/10.1016/0029-554X(71)90541-6

    Article  CAS  ADS  Google Scholar 

  19. S.K. Tandel et al., Isomers and oblate rotation in Pt isotopes: delineating the limit for collectivity at high spins. Phys. Lett. B 750, 225 (2015). https://doi.org/10.1016/j.physletb.2015.09.019

    Article  CAS  ADS  Google Scholar 

  20. B. Szpak et al., Isomeric states observed in heavy neutron-rich nuclei populated in the fragmentation of a \(^{208}\)Pb beam. Phys. Rev. C 83, 064–315 (2011). https://doi.org/10.1103/PhysRevC.83.064315

    Article  CAS  Google Scholar 

  21. S.G. Wahid et al., Metastable states from multinucleon excitations in \(^{202}\)Tl and \(^{203}\)Pb. Phys. Rev. C 102, 024–329 (2020). https://doi.org/10.1103/PhysRevC.102.024329

    Article  Google Scholar 

  22. V. Bothe et al., Isomers in \(^{203}\)Tl and core excitations built on a five-nucleon-hole structure. Phys. Rev. C 105, 044–327 (2022). https://doi.org/10.1103/PhysRevC.105.044327

    Article  Google Scholar 

  23. T. Kibedi et al., Evaluation of theoretical conversion coefficients using Br Icc. Nucl. Instrum. Methods Phys. Res. A589, 202 (2008). https://doi.org/10.1016/j.nima.2008.02.051

    Article  CAS  ADS  Google Scholar 

  24. A. Gorgen et al., Spectroscopy of \(^{200}\)Hg after incomplete fusion reaction. Eur. Phys. J A 6, 141 (1999)

    Article  CAS  ADS  Google Scholar 

  25. S. Suman et al., Nanosecond isomers and the evolution of collectivity in stable, even-\(A\) Hg isotopes. Phys. Rev. C 103, 014–319 (2021). https://doi.org/10.1103/PhysRevC.103.014319

    Article  Google Scholar 

  26. B. Szpak et al., Isomeric states observed in heavy neutron-rich nuclei populated in the fragmentation of a \(^{208}\)Pb beam. Phys. Rev. C 83, 064–315 (2011). https://doi.org/10.1103/PhysRevC.83.064315

    Article  CAS  Google Scholar 

  27. J. Wrzesinki et al., High-spin yrast structure of \(^{204}\)Hg from the decay of a four-hole, \(22^{+}\) isomer. Phys. Rev. C 92, 044–327 (2015). https://doi.org/10.1103/PhysRevC.92.044327

    Article  CAS  Google Scholar 

  28. S.J. Steer et al., Isomeric states observed in heavy neutron-rich nuclei populated in the fragmentation of a \(^{208}\)Pb beam. Phys. Rev. C 84, 044–313 (2011). https://doi.org/10.1103/PhysRevC.84.044313

    Article  CAS  Google Scholar 

  29. B. Fornal et al., Effective charge of the \(\pi h_{11/2}\) orbital and the electric field gradient of Hg from the Yrast structure of \(^{206}\)Hg. Phys. Rev. Lett. 87, 212–501 (2001). https://doi.org/10.1103/PhysRevLett.87.212501

    Article  CAS  Google Scholar 

  30. K.H. Maier et al., Measurement of the quadrupole moment of the \({5}^{-}\) level in \(^{206}\rm Hg \). Phys. Rev. C 30, 1702–1705 (1984). https://doi.org/10.1103/PhysRevC.30.1702

    Article  CAS  ADS  Google Scholar 

  31. P. Roy et al., Isomers from intrinsic excitations in \(^{200}\)Tl and \(^{201,202}\)Pb. Phys. Rev. C 100, 024–320 (2019). https://doi.org/10.1103/PhysRevC.100.024320

    Article  Google Scholar 

  32. S.G. Wahid, et al. Single-particle states and isomers in \(^{202}\)Tl and \(^{203}\)Pb. Proc DAE Int Symp Nucl. Phys. 63-228 (2018)

  33. R. Broda et al., High-spin states and isomers in the one-proton-hole and three-neutron-hole \(^{204}\)Tl isotope. Phys. Rev. C 84, 014–330 (2011). https://doi.org/10.1103/PhysRevC.84.014330

    Article  CAS  Google Scholar 

  34. M. Bowry et al., Population of high-spin isomeric states following fragmentation of \({}^{238}\)U. Phys. Rev. C 88, 024–611 (2013). https://doi.org/10.1103/PhysRevC.88.024611

    Article  CAS  Google Scholar 

  35. P. Roy, et al. Isomers and intrinsic excitations at high spin in \(^{201}\)Tl. Proceedings of the DAE International Symposium on Nucl. Phys. 63-238 (2018)

  36. J. Wrzesinski et al., The \(\pi h_{11/2}^{-1} \nu i_{13/2}^{-2}\) three-hole isomeric state and octupole core excitation in the \(^{205}\)Tl nucleus. Eur. Phys. J A 20, 57 (2004). https://doi.org/10.1140/epja/i2003-10194-y

    Article  CAS  ADS  Google Scholar 

  37. R. Broda et al., Doubly magic \(^{208}\)Pb: high-spin states, isomers, and \(E3\) collectivity in the yrast decay. Phys. Rev. C 95, 064–308 (2017). https://doi.org/10.1103/PhysRevC.95.064308

    Article  Google Scholar 

  38. S.G. Wahid et al., Emergence of an island of extreme nuclear isomerism at high excitation near \(^{208}\)Pb. Phys. Lett. B 832, 137–262 (2022). https://doi.org/10.1016/j.physletb.2022.137262

    Article  CAS  Google Scholar 

  39. U. Rosengard et al., Yrast spectroscopy and g-factor measurements in \(^{199}\)Pb, \(^{201}\)Pb and \(^{203}\)Pb. Nucl. Phys. A 482, 573 (1988). https://doi.org/10.1016/0375-9474(88)90171-6

    Article  ADS  Google Scholar 

  40. M. Rejmund et al., High spin states in \(^{210}\)Pb. Z. Phys. A 359(3), 243–245 (1997). https://doi.org/10.1007/s002180050397

    Article  CAS  ADS  Google Scholar 

  41. M. Rejmund et al., \(\gamma \) spectroscopy of \(^{209}\)Pb with deep inelastic reactions. Eur. Phys. J. A 1(3), 261–266 (1998). https://doi.org/10.1007/s100500050060

    Article  CAS  ADS  Google Scholar 

  42. H. Hubel et al., High-spin states in \(^{203}\)Bi populated in the (\(\alpha , 4n\)) reaction. Nucl. Phys. A 294, 177 (1978). https://doi.org/10.1016/0375-9474(78)90402-5

    Article  ADS  Google Scholar 

  43. H. Hubel et al., Isomeric transitions in \(^{203}\)Bi and \(^{205}\)Bi. Z. Phys. A 314, 89 (1983). https://doi.org/10.1007/BF01411835

    Article  ADS  Google Scholar 

  44. T. Lonnroth et al., High-spin states in \(^{207}\)Bi and the question of three-particle interactions. Phys. Scr. 19, 233 (1979). https://doi.org/10.1088/0031-8949/19/3/003

    Article  ADS  Google Scholar 

  45. T. Lonnroth et al., High-spin states in \(^{206}\)Bi populated in the \(^{205}\)Tl(\(\alpha , 3n\)) reaction. Z. Phys. A 287, 307 (1978). https://doi.org/10.1007/BF01481711

    Article  CAS  ADS  Google Scholar 

  46. J. Wrzesinski et al., Yrast structure of \(^{206}\)Bi: isomeric states and one-proton-particle, three-neutron-hole excitations. Phys. Rev. C 86, 054–322 (2012). https://doi.org/10.1103/PhysRevC.86.054322

    Article  CAS  Google Scholar 

  47. M. Rejmund, M. Schramm, K.H. Maier, Derivation of wave functions and matrix elements of the residual interaction in \({}^{208}\rm Pb \) from experimental data. Phys. Rev. C 59, 2520–2536 (1999). https://doi.org/10.1103/PhysRevC.59.2520

    Article  CAS  ADS  Google Scholar 

  48. M. Rejmund et al., Particle octupole-vibration coupling near \(^{208}\)Pb. Eur. Phys. J. A 8(2), 161–164 (2000). https://doi.org/10.1007/s100500070102

    Article  CAS  ADS  Google Scholar 

  49. M. Kadi, et al., Decay properties of states populated with the \(^{207}\)Pb(\(n, n^{\prime }\gamma \)) reaction and weak coupling in \(^{207}\)Pb. Phys. Rev. C 61, 034–307 (2000). https://doi.org/10.1103/PhysRevC.61.034307

  50. P. Möller, J. Nix, Nuclear pairing models. Nucl. Phys. A 536(1), 20–60 (1992). https://doi.org/10.1016/0375-9474(92)90244-E

    Article  ADS  Google Scholar 

  51. B. A. Brown, et al., Oxbash for Windows PC. MSU-NSCL Report 1289 (2004) (unpublished)

  52. L. Rydström, J. Blomqvist, R. Liotta, C. Pomar, Structure of proton-deficient nuclei near \(^{208}\)Pb. Nucl. Phys. A 512(2), 217–240 (1990). https://doi.org/10.1016/0375-9474(90)93152-V

    Article  ADS  Google Scholar 

  53. J. McGrory, T. Kuo, Shell model calculations of two to four identical-“particle’’ systems near \(^{208}\)Pb. Nucl. Phys. A 247(2), 283–316 (1975). https://doi.org/10.1016/0375-9474(75)90637-5

    Article  ADS  Google Scholar 

  54. T. Kuo, et al., Naval Res. Lab. Rep. 2258, 1971. (unpublished)

  55. G. Herling, T. Kuo, Two-particle states in \(^{210}\)Pb, \(^{210}\)Bi and \(^{210}\)Po with realistic forces. Nucl. Phys. A 181(1), 113–131 (1972). https://doi.org/10.1016/0375-9474(72)90905-0

    Article  CAS  ADS  Google Scholar 

  56. A. Kumar, P.C. Srivastava, Shell-model description for the first-forbidden \(\beta \)- decay of \(^{207}\)Hg into the one-proton-hole nucleus \(^{207}\)Tl. Nucl. Phys. A 1014, 122–255 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122255

    Article  CAS  Google Scholar 

  57. A. Hosaka, K.I. Kubo, H. Toki, G-matrix effective interaction with the paris potential. Nucl. Phys. A 444(1), 76–92 (1985). https://doi.org/10.1016/0375-9474(85)90292-1

    Article  ADS  Google Scholar 

  58. E.K. Warburton, B.A. Brown, Appraisal of the Kuo–Herling shell-model interaction and application to A = 210-212 nuclei. Phys. Rev. C 43, 602–617 (1991). https://doi.org/10.1103/PhysRevC.43.602

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Saket Suman for his contribution to different aspects of this work, and for his help in preparing this manuscript. S. G. Wahid, V. Bothe, Poulomi Roy, P.C. Srivastava, M. Hemalatha, P. Chowdhury, F.G. Kondev, R.V.F. Janssens, M.P. Carpenter, D. Seweryniak and T. Lauritsen contributed to a significant part of the results included in this review. The author would like to thank the Shiv Nadar Foundation (SNF). Part of the material was obtained through work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under award numbers DE-FG02-94ER40848 (UML), DE-FG02-97ER41041 (UNC) and DE-FG02-97ER41033 (TUNL), and contract number DE-AC02-06CH11357 (ANL). Some of the research described here utilized resources of the ATLAS facility at ANL, which is a DOE Office of Science user facility. The author acknowledges financial support from the Department of Science and Technology, Government of India (Grant No. IR/S2/PF-03/2003-III) for the Indian National Gamma Array (INGA) project, and thanks the INGA collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tandel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandel, S.K. Multi-neutron-hole and core-excited configurations of isomeric states near the doubly-magic \(^{208}\)Pb. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01131-4

Navigation