Skip to main content
Log in

Analytic solutions to the fractional kinetic equation involving the generalized Mittag-Leffler function using the degenerate Laplace type integral approach

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recently, several fractional kinetic equations involving various special functions have been widely and usefully used in describing and solving diverse important problems in physics and astrophysics. In this work, we present solutions of fractional kinetic equations involving kinds of the generalized Mittag-Leffler functions as an application of the modified degenerate Laplace integral transform (MDLIT). The MDLIT is obtained by using the degenerate-type exponential function, which was introduced by YunJae Kim et al. (Symmetry 10:471, 2018) as a generalization of the classical Laplace transform. The MDLIT of some fundamental functions and distinct generalized special functions such as the generalized Mittag-Leffler functions, the generalized hypergeometric function, and the Wright generalized hypergeometric function are also established. Furthermore, the outcomes for the traditional Laplace transform are retrieved from our results as particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data were used to support the study.

References

  1. P. Agarwal, D. Baleanu, Y. Chen, S. Momani, J. Machado, Fractional calculus: ICFDA 2018, Amman, Jordan, July 16–18—Springer Proceedings in Mathematics Statistics 303 (Hardback) (2020)

  2. S. Chakraverty, R.M. Jena, S.K. Jena, Computational fractional dynamical systems: fractional differential equations and applications (Wiley, 2023)

    MATH  Google Scholar 

  3. R. Hilfer, Applications of fractional calculus in physics (World Scientific, Singapore, 2000)

    MATH  Google Scholar 

  4. A.M. Mathai, H.J. Haubold, An introduction to fractional calculus (Nova Science Publishers, New York, 2017)

    MATH  Google Scholar 

  5. H.J. Haubold, A.H. Mathai, The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 327, 53–63 (2000)

    MATH  ADS  Google Scholar 

  6. P. Agarwal, M. Chand, D. Baleanu, D. Regan, S. Jain, On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018, 249 (2018)

    MathSciNet  MATH  Google Scholar 

  7. P. Agarwal, S. Ntouyas, S. Jain, M. Chand, G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform. Alex. Eng. J. 57, 1937–1942 (2018)

    Google Scholar 

  8. M. Hidan, M. Akel, H. Abd-Elmageed, M. Abdalla, Some matrix families of the Hurwitz-Lerch \(\zeta -\) functions and associted for fractional kinetic equations. Fractals, 30, 12 2240199 (2022)

  9. O. Khan, N. Khan, J. Choi, K.S. Nisar, A type of fractional kinetic equations associated with the \((p, q)-\) extented \(\tau -\) hypergeomtric and confluent hypergeomtric functions. Nonlinear Funct. Anal. Appl. 26, 381–392 (2021)

    MATH  Google Scholar 

  10. M. Hidan, M. Akel, H. Abd-Elmageed, M. Abdalla, Solution of fractional kinetic equations involving extended \((k, t)-\)Gauss hypergeometric matrix functions. AIMS Math. 7(8), 14474–14491 (2022)

    MathSciNet  MATH  Google Scholar 

  11. R.K. Saxena, A.M. Mathai, H.J. Haubold, On fractional kinetic equations. Astrophys. Space Sci. 282, 281–287 (2002)

    ADS  Google Scholar 

  12. R.K. Saxena, A.M. Mathai, H.J. Haubold, On generalized fractional kinetic equations. Physica A. 344, 657–664 (2004)

    MathSciNet  ADS  Google Scholar 

  13. R.K. Saxena, S.L. Kalla, On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 199, 504–511 (2008)

    MathSciNet  MATH  Google Scholar 

  14. V.B.L. Chaurasia, S.C. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 317, 213–219 (2008)

    ADS  Google Scholar 

  15. V.N. Kolokoltsov, M. Troeva, A new approach to fractional kinetic evolutions. Fractal Fract. 6, 49 (2022)

    Google Scholar 

  16. D.L. Suthar, D. Kumar, H. Habenom, Solutions of fractional kinetic equation associated with the generalized Mult-iindex Bessel function via Laplace transform. Differ. Equ. Dyn. Syst. 31, 357–370 (2023)

    MathSciNet  MATH  Google Scholar 

  17. M. Abdalla, M. Akel, Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations. Fractal Fract. 6, 305 (2022)

    Google Scholar 

  18. M. Akel, M. Hidan, S. Boulaaras, M. Abdalla, On the solutions of certain fractional kinetic matrix equations involving Hadamard fractional integrals. AIMS Math. 7, 15520–15531 (2022)

    MathSciNet  Google Scholar 

  19. K.S. Nisar, A. Shaikh, G. Rahman, D. Kumar, Solution of fractional kinetic equations involving class of functions and Sumudu transform. Adv. Differ. Equ. 2020, 39 (2020)

    MathSciNet  MATH  Google Scholar 

  20. A. A. Bhat, R. Chauhan, Fractional kinetic equation involving integral transform (January 6). Proceedings of 10th International Conference on Digital Strategies for Organizational Success, Available at SSRN: (2019).https://doi.org/10.2139/ssrn.3328161

  21. M.Z. Alqarni, A. Bakhet, M. Abdalla, Application of the pathway-type transform to a new form of a fractional kinetic equation involving the generalized incomplete Wright hypergeometric functions. Fractal Fract. 7, 348 (2023)

    Google Scholar 

  22. G.A. Dorrego, D.A. Kumar, generalization of the kinetic equation using the Prabhakar-type operators. Honam Math. J. 39, 401–416 (2017)

    MathSciNet  MATH  Google Scholar 

  23. M. Samraiz, M. Umer, A. Kashuri, T. Abdeljawad, S. Iqbal, N. Mlaiki, On Weighted \((k, s)\)-Riemann–Liouville fractional operators and solution of fractional kinetic equation. Fractal Fract. 5, 118 (2021)

    Google Scholar 

  24. G.A.R. Mathur, Solution of fractional kinetic equations by using integral transform. AIP Conf. Proc. 2253, 020004 (2020)

    Google Scholar 

  25. H. Habenom, A. Oli, D.L. Suthar, \((p, q)\)-extended Struve function: fractional integrations and application to fractional kinetic equations. J. Math. 2021, 5536817 (2021)

    MathSciNet  MATH  Google Scholar 

  26. K.P. Sharma, A. Bhargava, D.L. Suthar, Application of the Laplace transform to a new form of fractional kinetic equation involving the composition of the Galué Struve function and the Mittageffler function. Math. Probl. Eng. 2022, 5668579 (2022)

    Google Scholar 

  27. U.M. Abubakar, Solutions of fractional kinetic equations using the \((p, q; l)\)-extended \(\tau \)-Gauss hypergeometric function. J. New Theory. 33, 25–33 (2022)

    Google Scholar 

  28. T. Kim, D.S. Kim, Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24(2), 241–248 (2017)

    MathSciNet  MATH  Google Scholar 

  29. M.S. Alatawi, W.A. Khan, New type of degenerate Changhee–Genocchi polynomials. Axioms. 11, 355 (2022)

    Google Scholar 

  30. M. Akel, A. Bakhet, M. Abdalla, F. He, On degenerate gamma matrix functions and related functions. Linear Multilinear Algebra. 71, 673–691 (2023)

    MathSciNet  MATH  Google Scholar 

  31. T. Kim, D.S. Kim, Degenerate zero-truncated Poisson random variables. Russ. J. Math. Phys. 28, 66–72 (2021)

    MathSciNet  MATH  Google Scholar 

  32. T. Kim, D.V. Dolgy, D.S. Kim, H.K. Kim, S.H. Park, A note on degenerate generalized Laguerre polynomials and Lah numbers. Adv. Differ. Equ. 12, 421 (2021)

    MathSciNet  MATH  Google Scholar 

  33. T. Kim, D.S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials. Russ. J. Math. Phys. 28, 342–355 (2021)

    MathSciNet  MATH  Google Scholar 

  34. F.L. He, A. Bakhet, M. Akel, M. Abdalla, Degenerate analogues of Euler zeta, digamma, and polygamma functions. 2020:9 Article ID 8614841 (2020)

  35. Y. Kim, B. Kim, L. Jang, J. Kwon, A note on modified degenerate gamma and Laplace transformation. Symmetry. 10, 471 (2018)

    ADS  Google Scholar 

  36. M, Abdalla, Y. Almalki, H. Abd-Elmageed, Results on the modified degenerate Laplace type integral associated with applications involving fractional kinetic equations. Accepted in Demonstratio Mathematica (2023)

  37. L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15, 51–88 (1979)

    MathSciNet  MATH  Google Scholar 

  38. L. Carlitz, A degenerate Staudt Clausen theorem. Arch Math (Basel) 7, 28–33 (1956)

    MathSciNet  MATH  Google Scholar 

  39. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of integral transforms, vol. I (McGraw-Hill Book Company, New York, Toronto and London, 1954)

    MATH  Google Scholar 

  40. T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  41. G. Mittag-Leffler, Sur la nouvelle fonction \(E_{\alpha }(x)\). C.R. Acad. Sci. Paris. 137, 554–558 (1903)

    MATH  Google Scholar 

  42. A. Wiman, Über de fundamental satz in der theoric der funktionen \(E_{\alpha }(x)\). Acta Math. 29, 191–201 (1905)

    MathSciNet  MATH  Google Scholar 

  43. E.M. Wright, The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 10, 286–293 (1935)

    MATH  Google Scholar 

  44. E.M. Wright, On the coefficient of power series having exponential singularities. J. Lond. Math. Soc. 5, 71–79 (1933)

    MathSciNet  MATH  Google Scholar 

  45. A.A. Kilbas, M. Saigo, J.J. Trujillo, On the generalized Wright function. Fract. Calc. Appl. Anal. 5, 437–460 (2002)

    MathSciNet  MATH  Google Scholar 

  46. R. Desai, A.K. Shukla, Some results on function \( _{p} R_{q} (\alpha ;\beta ;z) \). J. Math. Anal. Appl. 448, 187–197 (2017)

    MathSciNet  Google Scholar 

  47. A. Pal, R.K. Jana, A.K. Shukla, On some results associated with \( _{p} R_{q} (\alpha ;\beta ;z) ; z)\) function. Natl. Acad. Sci. Lett. 44(2021), 259–262 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a Large Group research project under grant number RGP2/25/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdalla.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almalki, Y., Abdalla, M. Analytic solutions to the fractional kinetic equation involving the generalized Mittag-Leffler function using the degenerate Laplace type integral approach. Eur. Phys. J. Spec. Top. 232, 2587–2593 (2023). https://doi.org/10.1140/epjs/s11734-023-00925-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00925-2

Navigation