Skip to main content
Log in

Actuating mechanical arms coupled to an array of FitzHugh–Nagumo neuron circuits

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper is aimed at mimicking the motion of myriapods by using an array of mechanical arms coupled to an array of FitzHugh–Nagumo (FN) neuron circuits. The differential equation depicting the electromechanical system is achieved by using Kirchhoff’s and Newton’s laws. The system parameters are sensitive to the stability of the system as shown by numerical simulations such that for different ranges of the stimulation current, the array of the FN neuron circuit coupled to a single mechanical arm is either in the non-excitable state, excitable state or in the oscillatory state. For the values of the stimulation current in the excitable state, an action potential (AP) achieved produced an excitation greater enough to actuate significantly the mechanical leg. In the excitable state, the action of the magnetic signal on the single mechanical arm increases the amplitude of the instantaneous displacement of the legs. The array of the coupled electromechanical system in the excitable state produces an AP for the different values of the legs having the same behavior as shown by numerical simulations, which implied that neurons communicate without loss of amplitude when in the permanent regime. This behavior is similar to the instantaneous displacement of the mechanical legs, hence depicting the straightforward motion of myriapods without rotation. Finally, the velocities of the propagation of nerve impulses and that of the displacement of legs are quantitatively the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Duysens, A. Forner-Cordero, A controller perspective on biological gait control: Reflexes and central pattern generators. Annu. Rev. Control 48, 392–400 (2019)

    Article  MathSciNet  Google Scholar 

  2. L. Battistuzzi, C.T. Recchiuto, A. Sgorbissa, Ethical concerns in rescue robotics: a scoping review. Ethics Inf. Technol. 23, 863–875 (2021)

    Article  Google Scholar 

  3. J. Delmerico et al., The current state and future outlook of rescue robotics. J. F. Robot. 36, 1171–1191 (2019)

    Article  Google Scholar 

  4. C. Webster and S. Ivanov, Robotics, artificial intelligence, and the evolving nature of work, in In Digital transformation in business and society, Palgrave: Macmillan, Cham, 127–143 (2020).

  5. C. Koo, Z. Xiang, U. Gretzel, M. Sigala, Artificial intelligence (AI) and robotics in travel, hospitality and leisure. Electron. Mark. 31, 473–476 (2021)

    Article  Google Scholar 

  6. M. Tröbinger et al., Introducing garmi-a service robotics platform to support the elderly at home: Design philosophy, system overview and first results. IEEE Robot. Autom. Lett. 6, 5857–5864 (2021)

    Article  Google Scholar 

  7. B. A. Erol, A. Majumdar, J. Lwowski, P. Benavidez, P. Rad, and M. Jamshidi, Improved deep neural network object tracking system for applications in home robotics, in Computational Intelligence for Pattern Recognition, Springer, Cham, 369–395 (2018).

  8. P. Holmes, R.J. Full, D. Koditschek, J. Guckenheimer, The dynamics of Legged Locomotion: Models, Analyses, and Challenges. Soc. Ind. Appl. Math. 41, 205–208 (2006)

    MATH  Google Scholar 

  9. G. Taga, Y. Yamaguchi, H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  10. G. Endo, J. Morimoto, J. Nakanishi, G. Cheng, An empirical exploration of a neural oscillator for biped locomotion control. Int. Conf. Robot. Auto. 300, 3036–3042 (2004)

    Google Scholar 

  11. T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, K. Doya, Learning CPG-based biped locomotion with a policy gradient method. Rob. Auton. Syst. 54, 911–920 (2006)

    Article  Google Scholar 

  12. A. Cohen, S. Rossignol, S. Grillner, Neural control of rhythmic movements in vertebrates (Wiley, New York, 1988)

    Google Scholar 

  13. K. Pearson, Motor systems. Curr. Opin. Neurobiol. 10, 649–654 (2000)

    Article  Google Scholar 

  14. P.S. Katz, Evolution of central pattern generators and rhythmic behaviours. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150057–20150112 (2016)

    Article  Google Scholar 

  15. I. Steuer, P.A. Guertin, Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev. Neurosci. 30, 107–164 (2019)

    Article  Google Scholar 

  16. C. Mantziaris, T. Bockemühl, A. Büschges, Central pattern generating networks in insect locomotion. Dev. Neurobiol. 80, 16–30 (2020)

    Article  Google Scholar 

  17. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  18. E. N. Davison, Z. Aminzare, B. Dey, and N. Ehrich Leonard, Mixed mode oscillations and phase locking in coupled FitzHugh–Nagumo model neurons. Chaos, An Interdiscip. J. Nonlinear Sci., 29, 033105–16 (2019).

  19. R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278 (1955)

    Article  Google Scholar 

  20. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  ADS  Google Scholar 

  21. J.-I. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  22. E.M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting (The MIT Press, Cambridge, 2007)

    Google Scholar 

  23. R. Toral, C. Masoller, C.R. Mirasso, M. Ciszak, O. Calvo, Characterization of the anticipated synchronization regime in the coupled FitzHugh–Nagumo model for neurons. Phys. A Stat. Mech. its Appl. 325, 192–198 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. S. Mischler, C. Quininao, J. Touboul, On a kinetic FitzHugh–Nagumo model of neuronal network. Commun. Math. Phys. 342, 1001–1042 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. C. Koch, Biophysics of Computation (Oxford University Press, New York, 1999)

    Google Scholar 

  26. L. Glass, P. Hunter, A. McCulloch (eds.), Theory of Heart (Springer, New York, 1991)

    Google Scholar 

  27. W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, (2002).

  28. K.G. Pearson, Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci. 16, 265–297 (1993)

    Article  Google Scholar 

  29. R.M. Alexander, Principles of animal locomotion (Princeton University Press, Princeton, 2003)

    Google Scholar 

  30. R. Beale and T. Jackson, Neural Computing-an introduction. CRC Press, (1990).

  31. J. I. Espinosa-Ramos, N. Cruz-Cortés, and R. A. Vazquez, Creation of spiking neuron models applied in pattern recognition problems, in The 2013 International Joint Conference on Neural Networks (IJCNN), 1–8 (2013).

  32. A. S. Pandya and R. B. Macy, Pattern recognition with neural networks in C++. CRC Press, (1995).

  33. P. Bousoulas, M. Panagopoulou, N. Boukos, D. Tsoukalas, Emulating artificial neuron and synaptic properties with SiO2-based memristive devices by tuning threshold and bipolar switching effects. J. Phys. D. Appl. Phys. 54, 225303 (2021). https://doi.org/10.1088/1361-6463/abea3b

    Article  ADS  Google Scholar 

  34. N. Branko, M. Dubravko, K. Josip, and B. Danko, Artificial Intelligence and Bio robotics: Is an Artificial Human Being our Destiny?, in The 20th INTERNATIONAL DAAAM SYMPOSIUM “Intelligent Manufacturing & Automation: Theory, Practice & Education, 1–4 (2009).

  35. G. Dudek et al., A visually guided swimming robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 3604–3609 (2005).

  36. M.H. Raibert, H.B.J. Brown, M. Chepponis, Experiments in Balance with a 3D One-Legged Hopping Machine. Int. J. Rob. Res. 75, 75–92 (1984)

    Article  Google Scholar 

  37. M. Ahmadi, M. Buehler, Stable Control of a simulated one-legged running robot with hip and leg compliance. IEEE Trans. Robot. Autom. 13, 96–104 (1997)

    Article  Google Scholar 

  38. P. Gregorio, M. Ahmadi, and M. Buehler, Design , Control , and Energetics of an Electrically Actuated Legged Robot, IEEE Trans. Syst. man, Cybern. B Cybern., 27, 626–634 (1997).

  39. R. Niiyama, A. Nagakubo, and Y. Kuniyoshi, Mowgli : A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System, in IEEE International Conference on Robotics and Automation Roma, Italy, April, 2546–2551 (2007).

  40. M. Raibert, K. Blankespoor, G. Nelson, R. Playter, BigDog, the rough-terrain quadruped robot, in 17th IFAC world congress (IFAC’08) Seoul. Korea 41, 10822–10825 (2008)

    Google Scholar 

  41. S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, and M. R. Cutkosky, Whole body adhesion : hierarchical , directional and distributed control of adhesive forces for a climbing robot, in IEEE International Conference on Robotics and Automation Roma, Italy., April, 1268–1273 (2007).

  42. S. Hirose, P. Cave, C. Goulden, Biologically inspired robots: snake- like locomotors and manipulators (Oxford University Press, Oxford, UK, 1993)

    Google Scholar 

  43. F. Kaiser, Coherent oscillations in biological systems ii limit cycle collapse and the onset of travelling waves in fröhlich’s brain wave model. Zeitschrift für Naturforsch. A 33, 418–431 (1978)

    Article  ADS  Google Scholar 

  44. M. Rosenblum, N. Tukhlina, A. Pikovsky, L. Cimponeriu, Delayed feedback suppression of collective rhythmic activity in a neuronal ensemble. Int. J. Bifurc. Chaos 16, 1989–1999 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Nouri, G.R. Karimi, A. Ahmadi, D. Abbott, Digital multiplier less implementation of the biological FitzHugh–Nagumo model. Neurocomputing 165, 468–476 (2015)

    Article  Google Scholar 

  46. B. Yan, S. Panahi, S. He, S. Jafari, Further dynamical analysis of modified FitzHugh–Nagumo model under the electric field. Nonlinear Dyn. 101, 521–529 (2020)

    Article  Google Scholar 

  47. R. A. Garcia Sampaio, C. D. S. de Carvalho, G. M. Araujo, M. F. Pinto, D. B. Haddad, and F. M. G. França, A rhythmic activation mechanism for soft multi-legged robots, J. Intell. Robot. Syst., 101, 1–16 (2021).

  48. B. Chong et al., A general locomotion control framework for multi-legged locomotors. Bioinspir. Biomim. 17, 046015 (2022). https://doi.org/10.1088/1748-3190/ac6e1b

    Article  ADS  Google Scholar 

  49. H. C. Zhuang, N. Wang, H. B. Gao, and Z. Q. Deng, Autonomous fault-tolerant gait planning research for electrically driven large-load-ratio six-legged robot, in International Conference on Intelligent Robotics and Applications, 231–244 (2019).

  50. P. Dastangoo and A. Ramirez-Serrano, Multi-contact Stability of Multi-legged Robots Operating in Unstructured Terrains, in International Conference on Robotics in Alpe-Adria Danube Region, 504–512 (2022).

  51. X. Li, X. Li, L. Li, Y. Meng, Y. Tian, Load Sharing Design of a Multi-legged Adaptable Gripper With Gecko-Inspired Controllable Adhesion. IEEE Robot. Autom. Lett. 6, 8482–8489 (2021)

    Article  Google Scholar 

  52. J. Barreiros, K. W. O’Brien, S. Hong, M. F. Xiao, H. J. Yang, and R. F. Shepherd, Configurable tendon routing in a 3d-printed soft actuator for improved locomotion in a multi-legged robot, in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 94–101 (2019).

  53. P. Manoonpong, U. Parlitz, F. Worgotter, Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Front. Neural Circuits 9, 100–122 (2013)

    Google Scholar 

  54. C. Bal, G.O. Koca, D. Korkmaz, Z.H. Akpolat, M. Ay, CPG-based autonomous swimming control for multi-tasks of a biomimetic robotic fish. Ocean Eng. 189, 106334–106415 (2019)

    Article  Google Scholar 

  55. J. Wang, C. Hu, Y. Zhu, CPG-based hierarchical locomotion control for modular quadrupedal robots using deep reinforcement learning. IEEE Robot. Autom. Lett. 6, 7193–7200 (2021)

    Article  Google Scholar 

  56. A. Alam, H. Islam, M. T. Islam, S. Z. U. Rashid, M. J. Hossen, and M. S. Mahmud, CPG-Based Industrial Manipulators on AVR System for PTP Applications, in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 1–6 (2019).

  57. C. Akkawutvanich, F.I. Knudsen, A.F. Riis, J.C. Larsen, P. Manoonpong, Adaptive parallel reflex-and decoupled CPG-based control for complex bipedal locomotion. Rob. Auton. Syst. 134, 103663 (2020). https://doi.org/10.1016/j.robot.2020.103663

    Article  Google Scholar 

  58. J. E. Webb, J. A. Wallwork, and J. H. Elgood, Guide to invertebrate animals. Macmillan International Higher Education, (1975).

  59. F. Sinclair, Myriapods, in The Cambridge natural history, Cambridge: Cambridge University Press, 5 (1985).

  60. A.M. Nkomidio, S. Noubissie, P. Woafo, Dynamics of arrays of legs powered by a discrete electrical model of nerve. Phys. Lett. A 378, 857–862 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. S. Jacquir, S. Binczak, J.M. Bilbault, P. Athias, A theoretical approach of the propagation through geometrical constraints in cardiac tissue. Int. J. Bifurc. Chaos 17, 4417–4424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Marquié, S. Binczak, J.C. Comte, B. Michaux, J.M. Bilbault, Diffusion effects in a nonlinear electrical lattice. Phys. Rev. E 57, 6075–6078 (1998)

    Article  ADS  Google Scholar 

  63. S. Jacquir, S. Binczak, J.P. Gauthier, J.M. Bilbault, Emergence of travelling waves in smooth nerve fibres. Discret. Contin. Dyn. Syst. 1, 263–272 (2008)

    MathSciNet  MATH  Google Scholar 

  64. M.H. Kashani, A. Hosseini, F. Sassani, F.K. Ko, A.S. Milani, Understanding different types of coupling in mechanical behavior of woven fabric reinforcements: a critical review and analysis. Compos. Struct. 179, 558–567 (2017)

    Article  Google Scholar 

  65. A. Mohammadi, M. Mehrpooya, A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy 158, 632–655 (2018)

    Article  Google Scholar 

  66. B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: effects of different coupling topologies, EPL (Europhysics Lett., 118, 10001–7 (2017).

  67. W.S. Ruan, X.T. He, F.L. Zhao, J.W. Dong, Analysis of unidirectional coupling in topological valley photonic crystal waveguides. J. Light. Technol. 39, 889–895 (2020)

    Article  Google Scholar 

  68. D. Hrg, Synchronization of two Hindmarsh-Rose neurons with unidirectional coupling. Neural Netw. 40, 73–79 (2013)

    Article  MATH  Google Scholar 

  69. A. Dvorak, P. Kuzma, P. Perlikowski, V. Astakhov, T. Kapitaniak, Dynamics of three Toda oscillators with nonlinear unidirectional coupling. Eur. Phys. J. Spec. Top. 222, 2429–2439 (2013)

    Article  Google Scholar 

  70. C.A.S. Batista, J.D. Szezech Jr., A.M. Batista, E.E.N. Macau, R.L. Viana, Synchronization of phase oscillators with coupling mediated by a diffusing substance. Phys. A Statistical Mech. its Appl. 470, 236–248 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. F.D.S. Silva, S.R. Lopes, R.L. Viana, Synchronization of biological clock cells with a coupling mediated by the local concentration of a diffusing substance. Commun. Nonlinear Sci. Numer. Simul. 35, 37–52 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Philippides, P. Husbands, T. Smith, M. O’shea, Flexible couplings: Diffusing neuromodulators and adaptive robotics. Artif. Life 11, 139–160 (2005)

    Article  Google Scholar 

  73. J. Csicsvari, H. Hirase, A. Czurkó, A. Mamiya, G. Buzsáki, Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999)

    Article  Google Scholar 

  74. A.P. Maurer, S.L. Cowen, S.N. Burke, C.A. Barnes, B.L. McNaughton, Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J. Neurosci. 26, 13485–13492 (2006)

    Article  Google Scholar 

  75. Y. Wang, A. Barakat, H. Zhou, Electrotonic coupling between pyramidal neurons in the neocortex. PLoS ONE 5, e10253–e10259 (2010)

    Article  ADS  Google Scholar 

  76. J. Malmivuo and R. Plonsey, Bioelectromagnetism, Oxford University Press, 5 (1995).

  77. W. Maass, Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India, via funding number CIT/CNS/2021/RD/064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidore Komofor Ngongiah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngongiah, I.K., Ramakrishnan, B., Kuiate, G.F. et al. Actuating mechanical arms coupled to an array of FitzHugh–Nagumo neuron circuits. Eur. Phys. J. Spec. Top. 232, 285–299 (2023). https://doi.org/10.1140/epjs/s11734-022-00721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00721-4

Navigation