Skip to main content
Log in

Mathematical models of threshold phenomena in the nerve membrane

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

The types of mathematical model which have been used to represent all-or-none behavior in the nerve membrane may be classified as follows: (1) thediscontinuous threshold phenomenon, in which differential equations with discontinuous functions provide both a discontinuity of response as a function of stimulus intensity at threshold and a finite maximum latency, (2) thesingular-point threshold phenomenon which exists in a phase space having analytic functions in its differential equations and having a singular point with one characteristic root positive and the rest with negative real parts, the latency being unbounded, and (3) thequasi threshold phenomenon, which has a finite maximum latency and continuous functions, but neither a true discontinuity in response nor an exact threshold. Several models of the nerve membrane in the literature are classified accordingly, and the applicability of the different types of threshold phenomena to the membrane is discussed, including an extension to a stochastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Blair, E. and J. Erlanger. 1933. “A Comparison of the Characteristics of Axons through their Individual Electrical Responses”.Am. Jour. Physiol.,106, 524–64.

    Google Scholar 

  • Bonhoeffer, K. F. 1941. “Über die Aktivierung von Passiven Eisen in Salpetersaüre.”Ztschr. für Elektrochemie,47, 147–50.

    Google Scholar 

  • — 1948. “Activation of Passive Iron as a Model for the Excitation of Nerve.”Jour. Gen. Physiol.,32, 69–91.

    Article  Google Scholar 

  • — 1953. “Modelle der Nervenerregung.”Die Naturwissenschaften,40, 301–11.

    Article  Google Scholar 

  • Cole, K. S. 1949. “Dynamic Electrical Characteristics of the Squid Axon Membrane.”Arch. Sci. Physiol.,3, 253–58.

    Google Scholar 

  • — 1954. “Membrane Excitation of the Hodgkin-Huxley Axon.”Fed. Proc.,13, 28.

    Google Scholar 

  • Cole, K. S., H. A. Antosiewicz, and P. Rabinowitz. 1955. “Automatic Computation of Nerve Excitation.”Jour. Indust. Appl. Math. In press.

  • Fatt, P. and B. Katz. 1952. “Spontaneous Subthreshold Activity at Motor Nerve Endings.”Jour. Physiol.,117, 109–28.

    Google Scholar 

  • Hill, A. V. 1936. “Excitation and Accommodation in Nerve.”Proc. Roy. Soc. Lond., B.,119, 305–55.

    Google Scholar 

  • Hodgkin, A. L. 1952. “Measurement of Current-Voltage Relations in the Membrane of the Giant Axon ofLoligo.”Jour. Physiol.,116, 424–48.

    Google Scholar 

  • — and A. F. Huxley. 1952. “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve.”Jour. Physiol.,117, 500–544.

    Google Scholar 

  • ——, and B. Katz. 1949. “Ionic Currents Underlying Activity in the Giant Axon of the Squid.”Arch. Sci. Physiol.,3, 129–50.

    Google Scholar 

  • Johnson, F. H., H. Eyring, and M. J. Polissar. 1954.The Kinetic Basis of Molecular Biology. New York: J. Wiley and Sons, Inc.

    Google Scholar 

  • Johnson, J. B. 1928. “Thermal Agitation of Electricity in Conductors.”Phys. Rev.,32, 97–109.

    Article  Google Scholar 

  • Karreman, C. 1951. “Contributions to the Mathematical Biology of Excitation with Particular Emphasis on Changes in Membrane Permeability and on Threshold Phenomena.”Bull. Math. Biophysics,13, 189–243.

    Article  Google Scholar 

  • — and H. D. Landahl. 1952. “On the Mathematical Biology of Excitation Phenomena.”Cold Spring Harbor Symp. Quant. Biol.,17, 293–97.

    Google Scholar 

  • — and —. 1953. “On Spontaneous Discharges Obtained from a Physicochemical Model of Excitation”.Bull. Math. Biophysics,15, 83–91.

    Article  Google Scholar 

  • Lefschetz, S. 1948.Lectures on Differential Equations. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Lotka, A. J. 1925.Elements of Physical Biology. Baltimore: Williams and Wilkins Co.

    MATH  Google Scholar 

  • Marmont, G. 1949. “Studies on the Axon Membrane. I. A New Method.”Jour. Cell. Comp. Physiol.,34, 351–82.

    Article  Google Scholar 

  • Minorsky, N. 1947.Introduction to Non-linear Mechanics. Ann Arbor: J. W. Edwards.

    Google Scholar 

  • Nyquist, H. 1928. “Thermal Agitation of Electrical Charge in Conductors.”Phys. Rev.,32, 110–13.

    Article  Google Scholar 

  • Offner, F., A. Weinberg, and G. Young. 1940. “Nerve Conduction Theory: Some Mathematical Consequences of Bernstein's Model.”Bull. Math. Biophysics,2, 89–103.

    Article  MathSciNet  Google Scholar 

  • Pecher, C. 1939. “La Fluctuation d'Excitabilité de la Fibre Nerveuse.”Arch. Internat. Physiol.,49, 129–52.

    Google Scholar 

  • Petrowsky, I. 1934. “Über das Verhalten der Integralkurven eines Systems gewöhnlicher Differentialgleichungen in der Nähe eines singulären Punktes.”Recueil Math.,41, 107–56.

    MATH  Google Scholar 

  • Rashevsky, N. 1933. “Outline of a Physico-mathematical Theory of Excitation and Inhibition.”Protoplasma,20, 42–56.

    Google Scholar 

  • — 1948.Mathematical Biophysics. Rev. Ed., Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • — 1954. “Topology and Life: In Search of General Mathematical Principles in Biology and Sociology”.Bull. Math. Biophysics,16, 317–48.

    MathSciNet  Google Scholar 

  • Rushton, W. A. H. 1938. “Initiation of the Propagated Disturbance”.Proc. Roy. Soc. Lond., B.,124, 210–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FitzHugh, R. Mathematical models of threshold phenomena in the nerve membrane. Bulletin of Mathematical Biophysics 17, 257–278 (1955). https://doi.org/10.1007/BF02477753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477753

Keywords

Navigation