Skip to main content
Log in

ReLU-type memristor-based Hopfield neural network

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Due to the simple circuit realization, this paper proposes a ReLU-type memristor emulator firstly, whose pinched hysteresis loops are analyzed via numerical measures and certified via circuit simulations. On account of this emulator, a novel ReLU-type memristor-based Hopfield neural network (HNN) is presented, which is acquired by replacing a resistive interconnection synaptic weight with a memristive synaptic weight. The memristive HNN model has line equilibrium, and its stability is always unstable for different memristor coupling intensions. Furthermore, utilizing several numerical measures like bifurcation plots, mean value diagrams, phase portraits, and time sequences, we confirm that the ReLU-type memristor-based HNN model behaves the coexistence of multi-stable patterns of the double-scroll chaotic patterns with diverse topologies and periodic patterns with diverse topologies and periodicities. Of great interest, we demonstrate that transition behaviors and memristor initial boosting behaviors are also emerged in such memristive HNN model. Finally, the facticity of intricate kinetics is effectively validated by analog circuit simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

My manuscript has no associated data or the data will not be deposited.

References

  1. E.N. Lorenz, J. Atmos. Sci. 20(2), 130 (1963)

    Article  ADS  Google Scholar 

  2. F. Nazarimehr, S. Jafari, G.R. Chen, T. Kapitaniak, C.B. Li, Z.C. Wei, Int. J. Bifurcation Chaos 27(14), 1750221 (2017)

    Article  ADS  Google Scholar 

  3. F. Nazarimehr, J.C. Sprott, Eur. Phys. J. Spec. Top. 229, 1289 (2020)

    Article  Google Scholar 

  4. K. Rajagopal, S.T. Kingni, A. Khalaf, Y. Shekofteh, F. Nazarimehr, Eur. Phys. J. Spec. Top. 228(10), 2035 (2019)

    Article  Google Scholar 

  5. K. Rajagopal, A. Akgul, V.T. Pham, F.E. Alsaadi, F. Nazarimehr. F.E. Alsaadi, S. Jafari, Int. J. Bifurcation Chaos 29(13), 1950174 (2019)

  6. A. Ahmadi, X. Wang, F. Nazarimehr, F.E. Alsaadi, F.E. Alsaadi, V.T. Pham, Adv. Mech. Eng. 11(11), 1 (2019)

    Article  Google Scholar 

  7. P.Y. Gao, F.H. Min, C. Li, L. Zhang, Nonlinear Dyn. 106(3), 2203 (2021)

    Article  Google Scholar 

  8. O.E. Rössler, Phys. Lett. A 57(5), 397 (1976)

    Article  ADS  Google Scholar 

  9. J.C. Sprott, Phys. Rev. E 50(2), R647 (1994)

    Article  ADS  Google Scholar 

  10. Y.X. Peng, S.B. He, K.H. Sun, Nonlinear Dyn. 107, 1263 (2022)

    Article  Google Scholar 

  11. F.H. Min, W. Zhang, Z.Y. Ji, L. Zhang, Chaos Solitons Fract. 152, 111369 (2021)

    Article  Google Scholar 

  12. X.J. Ma, J. Mou, L. Xiong, S. Banerjee, Y.H. Cao, J.Y. Wang, Chaos Solitons Fract. 152, 111363 (2021)

    Article  Google Scholar 

  13. C.L. Li, Y.Y. Yang, J.R. Du, Z. Chen, Eur. Phys. J. Spec. Top. 230, 1723 (2021)

    Article  Google Scholar 

  14. W.L. Xie, C.H. Wang, H.R. Lin, Nonlinear Dyn. 104(4), 4523 (2021)

    Article  Google Scholar 

  15. L. Li, A.A.A. El-Latif, S. Jafari, K. Rajagopal, F. Nazarimehr, B. Abd-EI-Atty, Sensors 22(1), 334 (2022)

    Article  ADS  Google Scholar 

  16. G. Kim, J.H. In, Y.S. Kim, H. Rhee, W. Park, H. Song, J. Park, K.M. Kim, Nat. Commun. 12, 2906 (2021)

    Article  ADS  Google Scholar 

  17. H.Z. Li, Z.Y. Hua, H. Bao, L. Zhu, M. Chen, B.C. Bao, IEEE Trans. Ind. Electron. 68(10), 9931 (2021)

    Article  Google Scholar 

  18. Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo, X. Zhang, M. Cui, L. Shen, R. Huang, J.J. Yang, Appl. Phys. Rev. 7, 011308 (2020)

  19. Z.I. Mannan, S.P. Adhikari, C. Yang, R.K. Budhathoki, H. Kim, L. Chua, IEEE Trans. Neural Netw. Learn. Syst. (11), 3458 (2019)

  20. Y. Zhang, Y. Li, X.P. Wang, E.G. Friedman, IEEE Trans. on Electron Devices 64(4), 1806 (2017)

    Article  ADS  Google Scholar 

  21. H. Bao, Z.Y. Hua, H.Z. Li, M. Chen, B.C. Bao, IEEE Trans. Ind. Informat. (2020). https://doi.org/10.1109/TII.2021.3119387

    Article  Google Scholar 

  22. C. Xu, C.H. Wang, Y.C. Sun, Q.H. Hong, Q.L. Deng, H.W. Chen, Neurocomputing 462, 581 (2021)

    Article  Google Scholar 

  23. C. Xu, C.H. Wang, J.G. Jiang, J.R. Sun, H.R. Lin, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. (2021) https://doi.org/10.1109/TCAD.2021.3116463

  24. C.J. Chen, F.H. Min, Y.Z. Zhang, B.C. Bao, Nonlinear Dyn. 106, 2559 (2021)

    Article  Google Scholar 

  25. Q. Lai, B.C. Bao, C.Y. Chen, J. Kengne, A. Akgul, Eur. Phys. J. Spec. Top. 230, 1691 (2021)

    Article  Google Scholar 

  26. H. Lin, C. Wang, Q. Deng, C. Xu, Z. Deng, C. Zhou, Nonlinear Dyn. 106, 959 (2021)

    Article  Google Scholar 

  27. B.C. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Chaos Solitons Fract. 94, 102 (2017)

    Article  ADS  Google Scholar 

  28. L.L. Huang, S. Liu, J.H. Xiang, L.Y. Wang, 30(10), Chin. Phys. B 207 (2021)

  29. F.Y. Li, T.S. Wang, M. Chen, H.G. Wu, Eur. Phys. J. Spec. Top. 230, 1805 (2021)

    Article  Google Scholar 

  30. B.C. Bao, H. Qian, Q. Xu, M. Chen, J. Wang, Y.J. Yu, Front. Comput. Neurosci. 11, 1 (2017)

    Article  Google Scholar 

  31. P. Zhou, X. Zhang, J. Ma, Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07282-0

    Article  Google Scholar 

  32. J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)

    Article  Google Scholar 

  33. I. Hussain, D. Ghosh, S. Jafari, Appl. Math. Comput. 410, 126461 (2021)

    Google Scholar 

  34. J.J. Hopfield, Proc. Natl. Acad. Sci. USA 81, 3088 (1984)

    Article  ADS  Google Scholar 

  35. H.P. Hu, J.K. Wang, F.L. Xie, Entropy 21(1), 1 (2019)

    Article  ADS  Google Scholar 

  36. M.F. Danca, N. Kuznetsov, Chaos Solitons Fract. 103, 144 (2017)

    Article  ADS  Google Scholar 

  37. Z.T. Njitacke, S.D. Isaac, T. Nestor, J. Kengne, Neural Comput. & Applic. 33, 6733 (2021)

    Article  Google Scholar 

  38. Q. Li, S. Tang, H. Zeng, T. Zhou, Nonlinear Dyn. 78, 1087 (2014)

    Article  Google Scholar 

  39. Q. Xu, Z. Song, H. Bao, M. Chen, B.C. Bao, A.E.Ü. Int, J. Electron. Commun. 96, 66 (2018)

    Article  Google Scholar 

  40. F. Xu, J.Q. Zhang, S.F. Huang, S.Q. Xie, M.S. Wang, Indian J. Phys. 93, 765 (2019)

    Article  ADS  Google Scholar 

  41. V.T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, X. Wang, Sci. China Technol. Sci. 59, 358 (2016)

    Article  ADS  Google Scholar 

  42. T. Chen, L. Wang, S. Duan, Neurocomputing 380, 36 (2020)

    Article  Google Scholar 

  43. S. Zhang, J. Zheng, X. Wang, Z. Zeng, S. He, Nonlinear Dyn. 102, 2821 (2020)

    Article  Google Scholar 

  44. H. Lin, C. Wang, Q. Hong, Y. Sun, IEEE Trans. Circuits Syst. II, Exp. Briefs 67(12), 3472 (2020)

  45. F. Parastesh, S. Jafari, H. Azarnoush, B. Hatef, H. Namazi, D. Dudkowski, Eur. Phys. J. Spec. Top. 228, 2023 (2019)

  46. M.J. Hua, H. Bao, H.G. Wu, Q. Xu, B.C. Bao, Chin. J. Phys. 76, 217 (2022)

    Article  Google Scholar 

  47. D. Wang, J. Zeng, S. Lin, IEEE Trans. Neural Netw. Learn. Syst. 32(2), 748 (2021)

    Article  Google Scholar 

  48. W.Z. Huang, Y. Huang, Int. J. Bifurcation Chaos 21(03), 1102886 (2011)

    Article  Google Scholar 

  49. C.J. Chen, J.Q. Chen, H. Bao, M. Chen, B.C. Bao, Nonlinear Dyn. 95, 3385 (2019)

    Article  Google Scholar 

  50. B.C. Bao, J.Y. Luo, H. Bao, Q. Xu, Y.H. Hu, M. Chen, Circuit World 44, 178 (2018)

    Article  Google Scholar 

  51. C.P. Silva, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40(10), 675 (1993)

  52. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Phys. D 16, 285 (1985)

    Article  MathSciNet  Google Scholar 

  53. H. Bao, N. Wang, B.C. Bao, M. Chen, P.P. Jin, G.Y. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2017)

    Article  ADS  Google Scholar 

  54. V.T. Pham, A. Akgul, C. Volos, S. Jafari, T. Kapitaniak, A.E.Ü. Int, J. Electron. Commun. 78, 134 (2017)

    Google Scholar 

  55. H.M. Li, Y.F. Yang, W. Li, S.B. He, C.L. Li, Eur. Phys. J. Plus 135, 579 (2020)

    Article  Google Scholar 

  56. L. Ribar, R. Sepulchre, IEEE Trans. Circuits Syst. I, Reg. Papers 66(8), 3028 (2019)

  57. Y. Wang, F. Min, Y. Cheng, L. Dou, Eur. Phys. J. Spec. Top. 230, 1751 (2021)

    Article  Google Scholar 

  58. Y.Y. Xu, A.C.J. Luo, Mech. Syst. Sig. Process 171, 108810 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China under 61971228, 61871230, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China under Grant No. KYCX22_1635.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Fuhong Min.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Min, F. ReLU-type memristor-based Hopfield neural network. Eur. Phys. J. Spec. Top. 231, 2979–2992 (2022). https://doi.org/10.1140/epjs/s11734-022-00642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00642-2

Navigation