Skip to main content
Log in

Firing patterns of Izhikevich neuron model under electric field and its synchronization patterns

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recently, the researches have focused on the models that can simulate all the internal and external activities of neurons. The exchange of ions such as calcium, sodium, and potassium across the cell membrane induces a time-varying magnetic field, resulting in the construction of an electric field. This paper proposes an improved neuron model by considering the electric field in the Izhikevich neuron model. The model dynamics are investigated through spiking patterns and bifurcation diagrams for different parameters, such as amplitude and frequency of electric field, the electric field intensity, and the polarization of neurons. Furthermore, the behavior of the coupled improved neurons with electric field is under consideration. Different synchronization patterns such as the chimera state and the imperfect synchronization are observed by varying the parameters. Computing the global order parameters shows that the existence of the electric field leads to complete synchronization in stronger coupling coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Ma, J. Tang, A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  2. G.R. Simo et al., Chimera states in a neuronal network under the action of an electric field. Phys. Rev. E 103(6), 062304 (2021)

    Article  ADS  Google Scholar 

  3. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  4. K.M. Wouapi et al., Various firing activities and finite-time synchronization of an improved Hindmarsh-Rose neuron model under electric field effect. Cognit. Neurodyn. 14(3), 375–397 (2020)

    Article  Google Scholar 

  5. A.N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Hindmarsh, R. Rose, A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Article  ADS  Google Scholar 

  7. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  8. Q. Kang, B. Huang, M. Zhou, Dynamic behavior of artificial Hodgkin-Huxley neuron model subject to additive noise. IEEE Trans. Cybern. 46(9), 2083–2093 (2015)

    Article  Google Scholar 

  9. M. Lv et al., Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  10. M. Xing et al., Bifurcations and excitability in the temperature-sensitive Morris-Lecar neuron. Nonlinear Dyn. 100(3), 2687–2698 (2020)

    Article  Google Scholar 

  11. C.N. Takembo, M.E. Sone, Pattern selection in coupled neurons under high-low frequency electric field. Heliyon 7(1), e06132 (2021)

    Article  Google Scholar 

  12. Y. Xu et al., Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8(1), 1349 (2018)

    Article  ADS  Google Scholar 

  13. M. Ge et al., Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–523 (2018)

    Article  Google Scholar 

  14. Y. Xu et al., Dynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018, 3012743 (2018)

    Article  Google Scholar 

  15. J. Ma et al., Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019)

    Article  Google Scholar 

  16. B. Yan et al., Further dynamical analysis of modified Fitzhugh-Nagumo model under the electric field. Nonlinear Dyn. 101(1), 521–529 (2020)

    Article  Google Scholar 

  17. M. Ge et al., Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)

    MathSciNet  MATH  Google Scholar 

  18. J. Ma et al., Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29(01), 1450239 (2015)

    Article  ADS  Google Scholar 

  19. X. Sun, G. Li, Synchronization transitions induced by partial time delay in a excitatory–inhibitory coupled neuronal network. Nonlinear Dyn. 89(4), 2509–2520 (2017)

    Article  MathSciNet  Google Scholar 

  20. S. Rakshit et al., Synchronization and firing patterns of coupled Rulkov neuronal map. Nonlinear Dyn. 94(2), 785–805 (2018)

    Article  Google Scholar 

  21. I. Hussain, D. Ghosh, S. Jafari, Chimera states in a thermosensitive FitzHugh-Nagumo neuronal network. Appl. Math. Comput. 410, 126461 (2021)

    MathSciNet  MATH  Google Scholar 

  22. P.J. Uhlhaas, W. Singer, Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1), 155–168 (2006)

    Article  Google Scholar 

  23. I. Hussain et al., Chimera states in a multi-weighted neuronal network. Phys. Lett. A 424, 127847 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Schöll, Partial synchronization patterns in brain networks. Europhys. Lett. 136(1), 18001 (2021). https://doi.org/10.1209/0295-5075/ac3b97

    Article  ADS  Google Scholar 

  25. S. Rakshit et al., Neuronal synchronization in long-range time-varying networks. Chaos 31(7), 073129 (2021)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. S.-Y. Kim, W. Lim, Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cognit. Neurodyn. 11(5), 395–413 (2017)

    Article  Google Scholar 

  27. J. Ma, F. Wu, C. Wang, Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31(2), 1650251 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Ge et al., Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh-Rose neural network. Neurocomputing 320, 60–68 (2018)

    Article  Google Scholar 

  29. M. Shafiei et al., Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks. Eur. Phys. J. B 92(2), 36 (2019)

    Article  ADS  Google Scholar 

  30. E. Rybalova et al., Solitary states and solitary state chimera in neural networks. Chaos 29(7), 071106 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. S. Majhi, M. Perc, D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6(1), 39033 (2016)

    Article  ADS  Google Scholar 

  32. F. Parastesh et al., Chimeras. Phys. Rep. 898, 1–114 (2021)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. M. Mikhaylenko et al., Weak multiplexing in neural networks: switching between chimera and solitary states. Chaos 29(2), 023122 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. M. Santos et al., Chimera-like states in a neuronal network model of the cat brain. Chaos Solitons Fractals 101, 86–91 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2022/RD/006, the Natural Science Foundation of China (Nos. 61901530, 62071496, 62061008) and the Natural Science Foundation of Hunan Province (No. 2020JJ5767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivekanandhan, G., Hamarash, I.I., Ali Ali, A.M. et al. Firing patterns of Izhikevich neuron model under electric field and its synchronization patterns. Eur. Phys. J. Spec. Top. 231, 4017–4023 (2022). https://doi.org/10.1140/epjs/s11734-022-00636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00636-0

Navigation