Skip to main content
Log in

Complete synchronization analysis of neocortical network model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The brain is a complex network consisting of excitatory and inhibitory neurons. The connections between excitatory and inhibitory neurons lead to different dynamical behaviors. The synchronization is a significant behavior among these neurons. In this paper, the synchronization is analyzed by considering a simple neural network model for up-to-down-state oscillation of the cortical network. This neural network model includes a group of excitatory and inhibitory neurons coupled with each other. Synchronization of two neural models is analyzed, and it is revealed that it depends on the coupling of the excitatory neurons rather than the inhibitory ones. The network of neural models is also investigated by considering a one-dimensional and also two-layer structure. The results represent the formation of different dynamical behaviors such as imperfect synchronization, chimera state, and complete synchronization in the networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

Data generated during the current study will be made available on reasonable request.

References

  1. L.L. Moroz, Brain Behav. Evol. 74, 177–190 (2009)

    Article  Google Scholar 

  2. A. Foroutannia, M. Ghasemi, F. Parastesh, S. Jafari, M. Perc, Nonlinear Dyn. 100, 2699–2714 (2020)

    Article  Google Scholar 

  3. C. Chen, H. Bao, M. Chen, Q. Xu, B. Bao, AEU-Int. J. Electron. Commun. 111, 152894 (2019)

    Google Scholar 

  4. C. Chen, J. Chen, H. Bao, M. Chen, B. Bao, Nonlinear Dyn. 95, 3385–3399 (2019)

    Article  Google Scholar 

  5. A. Foroutannia, F. Nazarimehr, M. Ghasemi, S. Jafari, J. Theor. Biol. 528, 110837 (2021)

    Article  Google Scholar 

  6. M. Ghasemi, A. Foroutannia, A. Babajani-Feremi, Brain Behav. 11, e02101 (2021)

    Article  Google Scholar 

  7. M. Molinari, M.G. Leggio, M.H. Thaut, The Cerebellum 6, 18–23 (2007)

    Article  Google Scholar 

  8. E.D. Herzog, Nat. Rev. Neurosci. 8, 790–802 (2007)

    Article  Google Scholar 

  9. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175–308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Cohen and S. Havlin, Complex networks: structure, robustness and function (Cambridge university press, 2010).

  12. D.S. Bassett, O. Sporns, Nat. Neurosci. 20, 353–364 (2017)

    Article  Google Scholar 

  13. M. Saberi, R. Khosrowabadi, A. Khatibi, B. Misic, G. Jafari, Sci. Rep. 11, 1–14 (2021)

    Article  ADS  Google Scholar 

  14. C. Hammond, H. Bergman, P. Brown, Trends Neurosci. 30, 357–364 (2007)

    Article  Google Scholar 

  15. L.L. Rubchinsky, C. Park, R.M. Worth, Nonlinear Dyn. 68, 329–346 (2012)

    Article  Google Scholar 

  16. B. Hellwig, B. Schelter, B. Guschlbauer, J. Timmer, C. Lücking, Clin. Neurophysiol. 114, 1462–1467 (2003)

    Article  Google Scholar 

  17. M. Hemami, J.A. Rad, K. Parand, Int. J. Comput. Sci. Eng. 42, 101090 (2020)

    Google Scholar 

  18. Q.Y. Wang, Q.S. Lu, G.R. Chen, Physica A 374, 869–878 (2007)

    Article  ADS  Google Scholar 

  19. Q. Xu, X. Tan, D. Zhu, M. Chen, J. Zhou, H. Wu, Math. Probl. Eng. 2020, 8218740 (2020).

    Google Scholar 

  20. S.S. Muni, K. Rajagopal, A. Karthikeyan, S. Arun, Chaos Solitons Fract. 155, 111759 (2022)

    Article  Google Scholar 

  21. K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, Chaos 31, 083115 (2021)

    Article  ADS  Google Scholar 

  22. B. Ramakrishnan, M. Mehrabbeik, F. Parastesh, K. Rajagopal, S. Jafari, Electronics 11, 153 (2022)

    Article  Google Scholar 

  23. S. Rakshit, S. Majhi, J. Kurths, D. Ghosh, Chaos 31, 073129 (2021)

    Article  ADS  Google Scholar 

  24. I. Hussain, S. Jafari, D. Ghosh, M. Perc, Nonlinear Dyn. 104, 1–11 (2021)

    Article  Google Scholar 

  25. I. Hussain, S. Jafari, M. Perc, D. Ghosh, Phys. Lett. A 424, 127847 (2022)

    Article  Google Scholar 

  26. D. Ghosh, S. Banerjee, Chaos Solitons Fract. 53, 1–9 (2013)

    Article  ADS  Google Scholar 

  27. A. Bahramian, F. Parastesh, V.-T. Pham, T. Kapitaniak, S. Jafari, M. Perc, Chaos 31, 033138 (2021)

    Article  ADS  Google Scholar 

  28. Y. Li, Z. Wei, W. Zhang, M. Perc, R. Repnik, Appl. Math. Comput. 354, 180–188 (2019)

    MathSciNet  Google Scholar 

  29. Z. Liu, P. Zhou, J. Ma, A. Hobiny, F. Alzahrani, Chaos Solitons Fract. 131, 109533 (2020)

    Article  Google Scholar 

  30. F. Parastesh, M. Mehrabbeik, K. Rajagopal, S. Jafari, M. Perc, Chaos 32, 013125 (2022)

    Article  ADS  Google Scholar 

  31. B. Bao, Q. Yang, D. Zhu, Y. Zhang, Q. Xu, M. Chen, Nonlinear Dyn. 99, 2339–2354 (2020)

    Article  Google Scholar 

  32. M. Ghorbani, M. Mehta, R. Bruinsma, A.J. Levine, Phys. Rev. E 85, 021908 (2012)

    Article  ADS  Google Scholar 

  33. N.S. Hashemi, F. Dehnavi, S. Moghimi, M. Ghorbani, Neuroimage 189, 71–84 (2019)

    Article  Google Scholar 

  34. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  35. L. Huang, Q. Chen, Y.-C. Lai, L.M. Pecora, Phys. Rev. E 80, 036204 (2009)

    Article  ADS  Google Scholar 

  36. F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, M. Perc, Phys. Rep. 898, 1–114 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  37. L.R. Silva, Y. Amitai, B.W. Connors, Science 251, 432–435 (1991)

    Article  ADS  Google Scholar 

  38. H.J. Jang, H. Chung, J.M. Rowland, B.A. Richards, M.M. Kohl, J. Kwag, Sci. Adv. 6, eaay333 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Basic Research Program of Shaanxi (2021JM-533, 2021JQ-880, 2020JM-646), the Innovation Capability Support Program of Shaanxi (2018GHJD-21), the Support Plan for Sanqin Scholars Innovation Team in Shaanxi Province of China, the Youth Innovation Team of Shaanxi Universities, the Scientific Research Program Funded by Shaanxi Provincial Education Department (21JK0960), the Scientific Research Foundation of Xijing University (XJ21B01), and the Scientific Research Foundation of Xijing University (XJ200202). The work is also partially funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2022/RP-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

See Table A1.

Table A1 Biological description of variables and parameters of the model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Ramadoss, J., Wang, Z. et al. Complete synchronization analysis of neocortical network model. Eur. Phys. J. Spec. Top. 231, 4037–4048 (2022). https://doi.org/10.1140/epjs/s11734-022-00630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00630-6

Navigation