Skip to main content
Log in

A multi-value 3D crossbar array nonvolatile memory based on pure memristors

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

How to improve the storage density and solve the sneak path current problem has become the key to the design of nonvolatile memristive memory. In this paper, a high storage density and high reading/writing speed 3D crossbar array non-volatile memory based on pure memristors is proposed. The main works are as follows: (1) an extensible memristive cluster is proposed, (2) a memristive switch is designed, and (3) a 3D crossbar array non-volatile memory is constructed. The memory cell of the 3D crossbar array non-volatile memory is constructed by pure memristors and can be extended by adding memristor in a memristive cluster or adding memristive clusters in a memory cell to realize multi-value storage. The memristive switch can effectively reduce the sneak path current effect. The pure memristive memory cell solves the conflict between the storage density and sneak path current effect and greatly improves the storage density of memory cells. Furthermore, the 3D cross-array structure allows different memory cells on the same layer or different layers to be read and written in parallel, which greatly improves the speed of reading and writing. Simulations with PSpice verifies that the proposed memristive cluster can realize stable multi-value storage, has higher storage density, faster reading and writing speed, fewer input ports and output ports, better stability, and lower power consumption. Moreover, the structure proposed in this paper can also be used in the circuit design of the neuromorphic network, logic circuit, and other memristive circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Chua, Memristor-the missing circuit element. IEEE Transactions on Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, 453(2008), 80–83

    Article  ADS  Google Scholar 

  3. H. Lin, C. Wang, Q. Hong, Y. Sun. A multi-stable memristor and its application in a neural network. IEEE Trans. Circ. Syst. II: Brief Pap. 67(12), 3472–3476 (2020)

  4. Q. Hong, R. Yan, C. Wang, J. Sun, Memristive circuit implementation of biological nonassociative learning mechanism and its applications. IEEE Trans. Biomed. Circuits Syst. 14, 1036–1050 (2020)

    Article  Google Scholar 

  5. C. Wang, L. Xiong, J. Sun, and W. Yao, Memristor-based neural networks with weight simultaneous perturbation training, Nonlinear dynamics, 95(2019): 2893–2906

    Article  Google Scholar 

  6. F. Parastesh, S. Jafari, H. Azarnoush et al., Chimera in a network of memristor-based Hopfield neural network. The European Physical Journal Special Topics 228, 2023–2033 (2019)

    Article  Google Scholar 

  7. H. Lin, C. Wang, Q. Deng, C. Xu, Z Deng, Chao Zhou. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106(1), 959–973 (2021)

  8. C. Xu, C. Wang, Y. Sun, Q. Hong, Q. Deng, H. Chen. Memristor-based neural network circuit with weighted sum simultaneous perturbation training and its applications. Neurocomputing 462, 581–590 (2021)

  9. C. Li, Y. Yang, J. Du et al., A simple chaotic circuit with magnetic flux-controlled memristor. The European Physical Journal Special Topics 230(7), 1723–1736 (2021)

    Article  Google Scholar 

  10. S.G. Rohani, N. Taherinejad, D. Radakovits, A semiparallel full-adder in imply logic. IEEE Transactions on Very Large Scale Integration Systems 28, 297–301 (2020)

    Article  Google Scholar 

  11. S. Kvatinsky, G. Satat, N. Wald, E.G. Friedman, A. Kolodny, U.C. Weiser, Memristor-based material implication (imply) logic: Design principles and methodologies. IEEE Transactions on Very Large Scale Integration Systems 22, 2054–2066 (2014)

    Article  Google Scholar 

  12. S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E.G. Friedman, A. Kolodny, U.C. Weiser, Magic–memristor-aided logic. IEEE Trans. Circuits Syst. II Express Briefs 61, 895–899 (2014)

    Google Scholar 

  13. L. Guckert, E.E. Swartzlander, Optimized memristor-based multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 64, 373–385 (2017)

    Article  Google Scholar 

  14. Q. Hong, Z. Shi, J. Sun, and S. Du, Memristive self-learning logic circuit with application to encoder and decoder, Neural Computing and Applications, 33 (2020): 4901–4913

    Article  Google Scholar 

  15. W. Xie, C Wang, H Lin. A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104, 4523–4541 (2021)

  16. L. Zhou, C. Wang, L. Zhou. A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor. Int. J. Circuit Theory Appl. 46(1), 84–98 (2018)

  17. G. M. Huang, Y. Ho, P. Li, Memristor system properties and its design applications to circuits such as nonvolatile memristor memories. International Conference on Communications,Circuits and Systems, 2: 805–810 (2010)

    Google Scholar 

  18. P. Liu, Z. You, J. Wu, B. Liu, Y. Han, K. Chakrabarty, Fault Modeling and Efficient Testing of Memristor-Based Memory. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4444–4455 (2021)

    Article  Google Scholar 

  19. J. Lee, J. Park, S. Jung, F. Hwang, F. Hyunsang, Scaling effect of device area and film thickness on electrical and reliability characteristics of rram, in International interconnect technology conference and 2011 materials for advanced metallization, Dresden, Germany, vol. 2011 (2011), pp. 1–3

  20. Y. Guo, J. Robertson, Ab initio calculations of materials selection of oxides for resistive random access memories, Microelectronic Engineering, 147(2015), 339–343

    Article  Google Scholar 

  21. M. Guo, Z. Gao, Y. Xue, G. Dou, Y. Li, Dynamics of a physical SBT memristor-based Wien-bridge circuit, Nonlinear Dynamics, 93(3)(2018): 1681–1693

    Article  Google Scholar 

  22. W. Xue, Y. Li, G. Liu et al., Controllable and stable quantized conductance states in a Pt/HfOx/ITO memristor. Advanced Electronic Materials 6, 1901055 (2020)

    Article  Google Scholar 

  23. Y. Peng, S. He, K. Sun, Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm, Nonlinear Dynamics, 2021:1-13 (2021)

    Google Scholar 

  24. Y. Peng, S. He, K. Sun, A higher dimensional chaotic map with discrete memristor. AEU-Int. J. Electron. Commun. 129, 153539 (2021)

  25. S. He, K. Sun, Y. Peng, L. Wang, Modeling of discrete fracmemristor and its application. AIP Advances 10, 015332 (2020)

    Article  ADS  Google Scholar 

  26. X. Wang, P. Zhou, J. Eshraghian et al., High-density memristor-cmos ternary logic family. IEEE Trans. Circuits Syst. I Regul. Pap. 68(1), 264–274 (2020)

    Article  Google Scholar 

  27. S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, Team: Threshold adaptive memristor model. IEEE Trans. Circ. Syst. I Regul. Pap. 60, 211–221 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Kvatinsky, M. Ramadan, E.G. Friedman, A. Kolodny, Vteam: A general model for voltage-controlled memristors. IEEE Transactions on Circuits & Systems II Express Briefs 62, 786–790 (2015)

    Google Scholar 

  29. M. Teimoori, A. Amirsoleimani, A. Ahmadi, M. Ahmadi, A 2M1M crossbar architecture: Memory. IEEE Transactions on Very Large Scale Integration Systems 26, 2608–2618 (2018)

    Article  Google Scholar 

  30. Y. Yilmaz and P. Mazumder, A drift-tolerant read/write scheme for multilevel memristor memory, IEEE Transactions on Nanotechnology, 16(2017), 1016–1027

    Article  ADS  Google Scholar 

  31. X. Wang, S. Li, H. Liu, Z. Zeng, A compact scheme of reading and writing for memristor-based multi-valued memory. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37, 1505–1509 (2017)

    Article  Google Scholar 

  32. J. Sun. M. Li, K. Kang, P. Zhu, Y. Sun (2021) Design of Heterogeneous Memristor Based 1T2M Multi-value Memory Crossbar Array. Journal of Electronics & Information Technology 43 : 1533–1540

    Google Scholar 

  33. L. Shi, G. Zheng, B. Tian, B. Dkhil, C. Duan, Research progress on solutions to the sneak path issue in memristor crossbar arrays, Nanoscale. Advances 2, 1811–1827 (2020)

    Article  ADS  Google Scholar 

  34. V.S.S. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. Kim, S. Srinivasan, S. Kuppurao, S. Lodha, U. Ganguly, Punchthrough-diode-based bipolar RRAM selector by Si epitaxy. IEEE Electron Device Lett. 33, 1396–1398 (2012)

    Article  ADS  Google Scholar 

  35. H. Manem, G.S. Rose, A read-monitored write circuit for 1t1m multi-level memristor memories, in IEEE International Symposium on Circuits and Systems. Rio de Janeiro, Brazil, vol. 2011 (2011), pp. 2938–2941

  36. S. Yu, H. Wong, Compact modeling of conducting-bridge random-access memory (cbram). IEEE Trans. Electron Devices 58, 1352–1360 (2011)

    Article  ADS  Google Scholar 

  37. E. Lehtonen, J.H. Poikonen, M. Laiho, P. Kanerva, Large-scale memristive associative memories. IEEE Transactions on Very Large Scale Integration Systems 22, 562–574 (2014)

    Article  Google Scholar 

  38. V. Ravi, S. Singh, S. Reka-Sofana. Memristor-based 2D1M architecture: Solution to sneak paths in multilevel memory. Transactions on Emerging Telecommunications Technologies, 32(1) : e4143 (2021)

    Google Scholar 

  39. Y. Zhang, Y. Shen, X. Wang, L. Cao, A novel design for memristor-based logic switch and crossbar circuits. IEEE Transactions on Circuits & Systems I Regular Papers 62, 1402–1411 (2015)

    Article  ADS  Google Scholar 

  40. S. Kim, H. Y. Jeong, S. K. Kim, S. Y. Choi, and K. J. Lee, Flexible memristive memory array on plastic substrates, Nano Letters, 11(2011), 5438–5442

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant no. 62171182) and Natural Science Foundation of Hunan Province (Grant no. 2021JJ30147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingru Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Kang, K., Sun, Y. et al. A multi-value 3D crossbar array nonvolatile memory based on pure memristors. Eur. Phys. J. Spec. Top. 231, 3119–3130 (2022). https://doi.org/10.1140/epjs/s11734-022-00576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00576-9

Navigation