Skip to main content
Log in

Memristor-based neural networks with weight simultaneous perturbation training

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The training of neural networks involves numerous operations on the weight matrix. If neural networks are implemented in hardware, all weights will be updated in parallel. However, neural networks based on CMOS technology face many challenges in the updating phase of weights. For example, derivation of the activation function and error back propagation make it difficult to be realized at the circuit level, even though the back propagation algorithm is rather efficient and popular in neural networks. In this paper, a novel synaptic unit based on double identical memristors is designed, on the basis of which a new neural network circuit architecture is proposed. The whole network is trained by a hardware-friendly weight simultaneous perturbation (WSP) algorithm. The hardware implementation of neural networks based on WSP algorithm only involves the feedforward circuit and does not require the bidirectional circuit. Furthermore, two forward calculations are merely needed to update all weight matrices for each pattern, which significantly simplifies the weight update circuit and allows simpler and easier implementation of the neural network in hardware. The practicability, utility and simplicity of this scheme are demonstrated by the supervised learning tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tao, F., Busso, C.: Gating neural network for large vocabulary audiovisual speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 26(7), 1286–1298 (2018)

    Google Scholar 

  2. Talaśka, T., Kolasa, M., Dlugosz, R., Pedrycz, W.: Analog programmable distance calculation circuit for winner takes all neural network realized in the CMOS technology. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 661–673 (2016)

    Article  MathSciNet  Google Scholar 

  3. Talaśka, T., Kolasa, M., Dlugosz, R., Farine, P.A.: An efficient initialization mechanism of neurons for Winner Takes All Neural Network implemented in the CMOS technology. Appl. Math. Comput. 267, 119–138 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Sengupta, A., Banerjee, A., Roy, K.: Hybrid spintronic-CMOS spiking neural network with on-chip learning: devices, circuits, and systems. Phys. Rev. Appl. 6(6), 064003 (2016)

    Article  Google Scholar 

  5. Dlugosz, R., Kolasa, M., Pedrycz, W., Szulc, M.: Parallel programmable asynchronous neighborhood mechanism for Kohonen SOM implemented in CMOS technology. IEEE Trans. Neural Netw. 22(12), 2091–2104 (2011)

    Article  Google Scholar 

  6. Wu, X., Saxena, V., Zhu, K., Balagopal, S.: A CMOS spiking neuron for brain-inspired neural networks with resistive synapses and in situ learning. IEEE Trans. Circuits Syst. II 62(11), 1088–1092 (2015)

    Article  Google Scholar 

  7. Pan, C., Naeemi, A.: Non-Boolean computing benchmarking for beyond-CMOS devices based on cellular neural network. IEEE J. Explor. Solid-State Comput. Devices Circuits 2, 36–43 (2016)

    Article  Google Scholar 

  8. Goknar, I.C., Yildiz, M., Minaei, S., Deniz, E.: Neural CMOS-integrated circuit and its application to data classification. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 717–724 (2012)

    Article  Google Scholar 

  9. Valov, I., Kozicki, M.: Non-volatile memories: organic memristors come of age. Nat. Mater. 16, 1170–1172 (2017)

    Article  Google Scholar 

  10. Wang, Z., Joshi, S., Savel’ev, S.E., Jiang, H., Midya, R., Lin, P., Wu, Q.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101 (2017)

    Article  Google Scholar 

  11. Herrmann, E., Rush, A., Bailey, T., Jha, R.: Gate controlled three-terminal metal oxide memristor. IEEE Electron Device Lett. 39(4), 500–503 (2018)

    Article  Google Scholar 

  12. van de Burgt, Y., Lubberman, E., Fuller, E.J., Keene, S.T., Faria, G.C., Agarwal, S., Salleo, A.: A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16(4), 414–418 (2017)

    Article  Google Scholar 

  13. Gupta, I., Serb, A., Khiat, A., Zeitler, R., Vassanelli, S., Prodromakis, T.: Sub 100 nW volatile nano-metal-oxide memristor as synaptic-like encoder of neuronal spikes. IEEE Trans. Biomed. Circuits Syst. 12(2), 351–359 (2018)

    Article  Google Scholar 

  14. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008)

    Article  Google Scholar 

  15. Zhou, L., Wang, C., Zhou, L.: Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. 85(4), 2653–2663 (2016)

    Article  Google Scholar 

  16. Zhou, L., Wang, C., Zhou, L.: A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor. Int. J. Circuit Theory Appl. 46(1), 84–98 (2018)

    Article  Google Scholar 

  17. Panwar, N., Rajendran, B., Ganguly, U.: Arbitrary spike time dependent plasticity (STDP) in memristor by analog waveform engineering. IEEE Electron Device Letters. 38(6), 740–743 (2017)

    Article  Google Scholar 

  18. Cai, W., Ellinger, F., Tetzlaff, R.: Neuronal synapse as a memristor: modeling pair- and triplet-based STDP rule. IEEE Trans. Biomed. Circuits Syst. 9(1), 87–95 (2015)

    Article  Google Scholar 

  19. Nishitani, Y., Kaneko, Y., Ueda, M.: Supervised learning using spike-timing-dependent plasticity of memristive synapses. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 2999–3008 (2015)

    Article  MathSciNet  Google Scholar 

  20. Boyn, S., Grollier, J., Lecerf, G., Xu, B., Locatelli, N., Fusil, S., et al.: Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017)

    Article  Google Scholar 

  21. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 99, 56–67 (2018)

    Article  Google Scholar 

  22. Sheri, A.M., Hwang, H., Jeon, M., Lee, B.G.: Neuromorphic character recognition system with two PCMO memristors as a synapse. IEEE Trans. Ind. Electron. 61(6), 2933–2941 (2014)

    Article  Google Scholar 

  23. Legenstein, R., Naeger, C., Maass, W.: What can a neuron learn with spike-timing-dependent plasticity? Neural Comput. 17(11), 2337–2382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alibart, F., Zamanidoost, E., Strukov, D.B.: Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013)

    Article  Google Scholar 

  25. Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)

    Article  Google Scholar 

  26. Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., Song, W., et al.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018)

    Article  Google Scholar 

  27. Bayat, F.M., Prezioso, M., Chakrabarti, B., Nili, H., Kataeva, I., Strukov, D.: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018)

    Article  Google Scholar 

  28. Hu, X., Feng, G., Duan, S., Liu, L.: A memristive multilayer cellular neural network with applications to image processing. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1889–1901 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zeng, X., Wen, S., Zeng, Z., Huang, T.: Design of memristor-based image convolution calculation in convolutional neural network. Neural Comput. Appl. 30(2), 503–508 (2018)

    Article  Google Scholar 

  30. Adhikari, S.P., Yang, C., Kim, H., Chua, L.O.: Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1426–1435 (2012)

    Article  Google Scholar 

  31. Soudry, D., Di Castro, D., Gal, A., Kolodny, A., Kvatinsky, S.: Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2408–2421 (2015)

    Article  MathSciNet  Google Scholar 

  32. Adhikari, S.P., Kim, H., Budhathoki, R.K., Yang, C., Chua, L.O.: A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses. IEEE Trans. Circuits Syst. I 62(1), 215–223 (2015)

    Article  Google Scholar 

  33. Alspector, J., Meir, R., Yuhas, B., Jayakumar, A., Lippe, D.: A parallel gradient descent method for learning in analog VLSI neural networks. In: Advances in Neural Information Processing Systems, pp. 836–844 (1993)

  34. Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: Team: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I 60(1), 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  35. Belli, M.R., Conti, M., Turchetti, C.: Analog Brownian weight movement for learning of artificial neural networks. In: European Symposium on Artificial Neural Networks (ESANN), pp. 19–21 (1995)

  36. Conti, M., Orcioni, S., Turchetti, C.: A new stochastic learning algorithm for analog hardware implementation. In: International Conference on Artificial Neural Networks (ICANN), pp. 1171–1176 (1998)

  37. Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-based material implication (imply) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. Syst. 22(10), 2054–2066 (2014)

    Article  Google Scholar 

  38. Yang, C., Kim, H., Adhikari, S.P., Chua, L.O.: A circuit-based neural network with hybrid learning of backpropagation and random weight change algorithms. Sensors 17, 16 (2016)

    Article  Google Scholar 

  39. Bache, K., Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2018)

  40. Murray, A.F., Edwards, P.J.: Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training. IEEE Trans. Neural Netw. 5(5), 792–802 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61571185), the Natural Science Foundation of Hunan Province, China (No. 2016JJ2030) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 15K027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xiong, L., Sun, J. et al. Memristor-based neural networks with weight simultaneous perturbation training. Nonlinear Dyn 95, 2893–2906 (2019). https://doi.org/10.1007/s11071-018-4730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4730-z

Keywords

Navigation